
Learning Robust Dynamics through
Variational Sparse Gating

Arnav Kumar Jain1,2,∗, Shivakanth Sujit2,3, Shruti Joshi2,3, Vincent Michalski1,2

Danijar Hafner4,5, Samira Ebrahimi-Kahou2,3,6

Abstract

Learning world models from their sensory inputs enables agents to plan for actions
by imagining their future outcomes. World models have previously been shown to
improve sample-efficiency in simulated environments with few objects, but have not
yet been applied successfully to environments with many objects. In environments
with many objects, often only a small number of them are moving or interacting
at the same time. In this paper, we investigate integrating this inductive bias of
sparse interactions into the latent dynamics of world models trained from pixels.
First, we introduce Variational Sparse Gating (VSG), a latent dynamics model that
updates its feature dimensions sparsely through stochastic binary gates. Moreover,
we propose a simplified architecture Simple Variational Sparse Gating (SVSG)
that removes the deterministic pathway of previous models, resulting in a fully
stochastic transition function that leverages the VSG mechanism. We evaluate the
two model architectures in the BringBackShapes (BBS) environment that features
a large number of moving objects and partial observability, demonstrating clear
improvements over prior models.

1 Introduction

Latent dynamics models are models that generate agent’s future states in the compact latent space
without feeding the high-dimensional observations back to the model. They have shown promising
results on various tasks like video prediction (Karl et al., 2016; Kalman, 1960; Krishnan et al., 2015),
model-based Reinforcement Learning (RL) (Hafner et al., 2020; 2021; 2019; Ha and Schmidhuber,
2018), and robotics (Watter et al., 2015). Generating sequences in the compact latent space reduces
the accumulating errors leading to more accurate long-term predictions. Additionally, having lower
dimensionality leads to a lower memory footprint. Solving tasks in model-based RL involves learning
a world model (Ha and Schmidhuber, 2018) that can predict outcomes of actions, followed by
using them to derive behaviors (Sutton, 1991). Motivated by these benefits, the recently proposed
DreamerV1 (Hafner et al., 2020) and DreamerV2 (Hafner et al., 2021) agents achieved state-of-the-art
results on a wide range of visual control tasks.

Many complex tasks require reliable long-term prediction of dynamics. This is true especially in
partially observable environments where only a subspace is visible to the agent, and it is usually
required to accurately retain information over multiple time steps to solve the task. The Dreamer
agents (Hafner et al., 2020; 2021) employ an Recurrent State-Space Model (RSSM) (Hafner et al.,
2019) comprising of a Recurrent Neural Network (RNN). Training RNNs for long sequences is chal-
lenging as they suffer from optimization problems like vanishing gradients (Hochreiter, 1991; Bengio
et al., 1994). Different ways of applying sparse updates in RNNs have been investigated (Campos
et al., 2017; Neil et al., 2016; Goyal et al., 2019), enabling a subset of state dimensions to be constant

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

1Université de Montréal, 2Mila- Quebec AI Institute, 3École de technologie supérieure, 4University of Toronto,
5Google Brain, 6CIFAR. ∗Correspondence to Arnav Kumar Jain <arnav-kumar.jain@mila.quebec>.



during the update. A sparse update prior can also be motivated by the fact that in the real world, many
factors of variation are constant over extended periods of time. For instance, several objects in a
physical simulation may be stationary until some force acts upon them. Additionally, this is useful in
the partially observable setting where the agent observes a constrained viewpoint and has to keep
track of objects that are not visible for many time steps. In this work, we introduce Variational Sparse
Gating (VSG), a stochastic gating mechanism that sparsely updates the latent states at each step.

Recurrent State-Space Model (RSSM) (Hafner et al., 2019) was introduced in PLaNet where the
model state was composed of two paths, an image representation path and a recurrent path. Dream-
erV1 (Hafner et al., 2020) and DreamerV2 (Hafner et al., 2021) utilized them to achieve state-
of-the-art results in continuous and discrete control tasks (Hafner et al., 2019). While the image
representation path which is stochastic accounts for multiple possible future states, the recurrent path
is deterministic to retain information over multiple time steps to facilitate gradient-based optimiza-
tion. (Hafner et al., 2019) showed that both components were important for solving tasks, where
the stochastic part was more important to account for partial observability of the initial states. By
leveraging the proposed gating mechanism (Variational Sparse Gating (VSG)), we demonstrate that a
purely stochastic model with a single component can achieve competitive results, and call it Simple
Variational Sparse Gating (SVSG). To the best of our knowledge, this is the first work that shows
that purely stochastic models achieve competitive performance on continuous control tasks when
compared to leading agents.

Existing benchmarks (Bellemare et al., 2013; Chevalier-Boisvert et al., 2018; Tassa et al., 2018) for RL
do not test the capability of agents in both partial observability and stochasticity. The Atari (Bellemare
et al., 2013) benchmark comprises of 55 games but most of the games are deterministic and a lot of
compute is required to train on them. Some tasks in the Atari and Minigrid benchmarks are partially-
observable but either lack stochasticity or are hard exploration tasks. Also, these benchmarks do not
allow for controlling the factors of variation. We developed a new partially-observable and stochastic
environment, called BringBackShapes (BBS), where the task is to push objects to a predefined goal
area. Solving tasks in BBS require agents to remember states of previously observed objects and
avoid noisy distractor objects. Furthermore, VSG and SVSG outperformed leading model-based and
model-free baselines. We also present studies with varying partial-observability and stochasticity to
demonstrate that the proposed agents have better memory for tracking observed objects and are more
robust to increasing levels of noise. Lastly, the proposed methods were also evaluated on existing
benchmarks - DeepMind Control (DMC) (Tassa et al., 2018), DMC with Natural Background (Zhang
et al., 2021; Nguyen et al., 2021b), and Atari (Bellemare et al., 2013). On the existing benchmarks,
the proposed method performed better on tasks with changing viewpoints and sparse rewards.

Our key contributions are summarized as follows:

• Variational Sparse Gating: We introduce Variational Sparse Gating (VSG), where the recurrent
states are sparsely updated through a stochastic gating mechanism. A comprehensive empirical
evaluation shows that VSG outperforms baselines on tasks requiring long-term memory.

• Simple Variational Sparse Gating: We also propose Simple Variational Sparse Gating (SVSG)
which has a purely stochastic state, and achieves competitive results on continuous control tasks
when compared with agents that also use a deterministic component.

• BringBackShapes: We developed the BringBackShapes (BBS) environment to evaluate agents
on partially-observable and stochastic settings where these variations can be controlled. Our
experiments show that the proposed agents are more robust to such variations.

2 Variational Sparse Gating

Reinforcement Learning: The visual control task can be formulated as a Partially Observable
Markov Decision Process (POMDP) with discrete time steps t ∈ [1;T ]. The agent selects action
at ∼ p(at|o≤t, a<t) to interact with the environment and receives the next observation and scalar
reward ot, rt ∼ p(ot, rt|o<t, r<t), respectively, at each time step. The goal is to learn a policy that
maximizes the expected discounted sum of rewards Ep(

∑T
t=1 γ

trt), where γ is the discount factor.

Agent: Agent is composed of a world model and a policy (Fig. 1). World models (Sec. 2.1) encode a
sequence of observations and actions into latent representations. The agents behavior (Appendix B)
is derived to maximize expected returns on the trajectories generated from the learned world model.
While training, the world model is learned with collected experience, the policy is improved on

2



𝑠1 𝑠2 𝑠3𝑠0

𝑎1

Ƹ𝑟1

𝑥1 𝑥2 𝑥3

ො𝑥1

𝑎0 𝑎2

Ƹ𝑟2

ො𝑥2

VSGVSGVSG

Ƹ𝑟3

ො𝑥3

(a)

𝑠1𝑠0

Ƹ𝑟1

𝑥1

Ƹ𝑟2

VSGVSGVSG

Ƹ𝑟3

ො𝑎1 ො𝑎2 ො𝑎3

ො𝑣1 ො𝑣2 ො𝑣3

Ƹ𝑠2 Ƹ𝑠3

(b)

Figure 1: (a) World Model: The VSG block takes the previous model state st−1 and action at−1, and
outputs the updated model state at next step st, which is further used to reconstruct image x̂t and
reward r̂t. (b) Policy: Comprises of an actor to select optimal action ât and critic to predict value v̂t
beyond the planning horizon. The world model is unrolled using the prior model state ŝt which does
not contain information about image xt.

trajectories unrolled using the world model and new episodes are collected by deploying the policy
in the environment. An initial set of episodes are collected using a random policy. As training
progresses, new episodes are collected using the latest policy to further improve the world model.

2.1 World Model

World Models (Ha and Schmidhuber, 2018) learn to mimic the environment using the collected
experience and facilitate deriving behaviours in the abstract latent space. Given an abstract state of the
world and an action, the model applies the learned transition dynamics to predict the resulting next
state and reward. RSSM (Hafner et al., 2019) was introduced in PlaNet, where the model state was
composed of two paths. The recurrent path consists of an RNN (See Figure 2 [a]), and is motivated
with reliable long-term information preservation, while the image representation path samples from a
learned distribution to account for multiple possible futures (Babaeizadeh et al., 2017). In this work,
we introduce Variational Sparse Gating (VSG), where the recurrent path selectively updates a subset
of the latent states at each step using a stochastic gating network. Sparse updates enable the agent to
have long-term memory and learn robust representations to solve complex tasks.

Model Components: The world model comprises of an image encoder, a VSG model, and predictors
for image, discount and reward. The image encoder generates representations ot for the observation xt
using Convolutional Neural Networks (CNNs). The VSG model comprises of a recurrent model
equipped with the stochastic gating mechanism to get the recurrent state ht, and is used to compute
two stochastic image representation states. The posterior representation state zt is obtained using
the representation model and contains information about the current observation xt. The prior
state ẑt is obtained from the transition predictor without observing the current observation xt. This is
useful while planning as sequences are generated in compact latent state, and the output from the
transition predictor is utilized. This also results in a lower memory footprint and enables predictions
of thousands of trajectories in parallel on a single GPU. The representation states are sampled from a
known distribution with learned parameters like Gaussian (Hafner et al., 2020) or Categorical (Hafner
et al., 2021). The concatenation of outputs from the recurrent and image representation models gives
the compact model state (st = [ht, zt]). The posterior model state is further used to reconstruct the
original image x̂t, predict the reward r̂t, and discount factor γ̂t. The discount factor helps to predict
the probability that an episode will end. The components of the world model are as follows:

Recurrent model: ht = fϕ(ht−1, zt−1, at−1)

Representation model: zt ∼ qϕ(zt | ht, xt)
Transition predictor: ẑt ∼ pϕ(ẑt | ht)
Image predictor: x̂t ∼ pϕ(x̂t | ht, zt)
Reward predictor: r̂t ∼ pϕ(r̂t | ht, zt)
Discount predictor: γ̂t ∼ pϕ(γ̂t | ht, zt).

(1)

3



𝑊𝑣 ⊗

𝑖𝑡

ℎ𝑡−1 ℎ𝑡

𝑣𝑡

෨ℎ𝑡

𝑜𝑡

𝑧𝑡

Ƹ𝑧𝑡~

~

tanh⊕

𝑢𝑡

ℳ
𝜎

𝑓𝑝

𝑓𝑞

𝑊𝑐

𝑊𝑢 𝜎

𝑊𝑣 ⊗

𝑖𝑡

ℎ𝑡−1 ℎ𝑡

𝑣𝑡

෨ℎ𝑡

𝑜𝑡

𝑧𝑡

Ƹ𝑧𝑡~

~

tanh⊕
ℳ

𝜎
𝑓𝑝

𝑓𝑞

𝑊𝑐

𝑊𝑢 𝜎 ~ℬ
𝑢𝑡 𝑢𝑡

𝑠𝑡−1

𝑊𝑣 ⊗

𝑖𝑡

𝑣𝑡

𝑜𝑡

𝑧𝑡

Ƹ𝑧𝑡
~

~

tanh⊕

𝜎

𝑓𝑝

𝑓𝑞
𝑊𝑐

𝑊𝑢 𝜎 ~ℬ
𝑢𝑡 𝑢𝑡

ℳ

ℳ

ǁ𝑠𝑡

𝑠𝑡

Ƹ𝑠𝑡

(a)

𝑊𝑣 ⊗

𝑖𝑡

ℎ𝑡−1 ℎ𝑡

𝑣𝑡

෨ℎ𝑡

𝑜𝑡

𝑧𝑡

Ƹ𝑧𝑡~

~

tanh⊕

𝑢𝑡

ℳ
𝜎

𝑓𝑝

𝑓𝑞

𝑊𝑐

𝑊𝑢 𝜎

𝑊𝑣 ⊗

𝑖𝑡

ℎ𝑡−1 ℎ𝑡

𝑣𝑡

෨ℎ𝑡

𝑜𝑡

𝑧𝑡

Ƹ𝑧𝑡~

~

tanh⊕
ℳ

𝜎
𝑓𝑝

𝑓𝑞

𝑊𝑐

𝑊𝑢 𝜎 ~ℬ
𝑢𝑡 𝑢𝑡

𝑠𝑡−1

𝑊𝑣 ⊗

𝑖𝑡

𝑣𝑡

𝑜𝑡

𝑧𝑡

Ƹ𝑧𝑡
~

~

tanh⊕

𝜎

𝑓𝑝

𝑓𝑞
𝑊𝑐

𝑊𝑢 𝜎 ~ℬ
𝑢𝑡 𝑢𝑡

ℳ

ℳ

ǁ𝑠𝑡

𝑠𝑡

Ƹ𝑠𝑡

(b)

𝑊𝑣 ⊗

𝑖𝑡

ℎ𝑡−1 ℎ𝑡

𝑣𝑡

෨ℎ𝑡

𝑜𝑡

𝑧𝑡

Ƹ𝑧𝑡~

~

tanh⊕

𝑢𝑡

ℳ
𝜎

𝑓𝑝

𝑓𝑞

𝑊𝑐

𝑊𝑢 𝜎

𝑊𝑣 ⊗

𝑖𝑡

ℎ𝑡−1 ℎ𝑡

𝑣𝑡

෨ℎ𝑡

𝑜𝑡

𝑧𝑡

Ƹ𝑧𝑡~

~

tanh⊕
ℳ

𝜎
𝑓𝑝

𝑓𝑞

𝑊𝑐

𝑊𝑢 𝜎 ~ℬ
𝑢𝑡 𝑢𝑡

𝑠𝑡−1

𝑊𝑣 ⊗

𝑖𝑡

𝑣𝑡

𝑜𝑡

𝑧𝑡

Ƹ𝑧𝑡
~

~

tanh⊕

𝜎

𝑓𝑝

𝑓𝑞
𝑊𝑐

𝑊𝑢 𝜎 ~ℬ
𝑢𝑡 𝑢𝑡

ℳ

ℳ

ǁ𝑠𝑡

𝑠𝑡

Ƹ𝑠𝑡

(c)

Figure 2: Architectures of (a) Recurrent State-Space Model (RSSM), (b) Variational Sparse Gating
(VSG), and (c) Simple Variational Sparse Gating (SVSG), respectively. σ and tanh denote the
sigmoid and tanh non-linear activations, respectively. W∗ and b∗ are the corresponding weights
and biases. ∼, ⊕ and ⊗ denote sampling, vector concatenation, and element-wise multiplication,
respectively. M computes xt = utx̃t + (1− ut)xt−1, where xt = ht is used for RSSM and VSG,
and xt = st is used for SVSG. B denotes Bernoulli distribution. fp and fq denote the prior and
posterior distributions with learned parameters, respectively (See Appendix I for more details).

Neural Networks: The representation model outputs the posterior image representation state zt
conditioned on the image encoding xt and recurrent state ht. The transition predictor provides the
prior image representation state ẑt. The image encoding ot is obtained by passing the image xt
through CNN (LeCun et al., 1989) and Multi-layer Perceptron (MLP) layers. In VSG, we propose
to modify the Gated Recurrent Unit (GRU) used in RSSM to sparsely update the recurrent state at
each step. The model state st, which is a concatenation of recurrent and image representation states
is passed through several layers of MLP to predict the discount and reward, and transposed CNN
layers are used to reconstruct the image. The Exponential Linear Unit (ELU) activation is used for
training all the components of the world model (Clevert et al., 2015).

Sparse Gating: In light of training RNNs to capture long-term dependencies, different ways of
applying sparse updates have been investigated (Campos et al., 2017; Neil et al., 2016; Goyal
et al., 2019), enabling a subset of state dimensions to be constant during the update. They were
found to alleviate the vanishing gradient problem by effectively reducing the number of sequential
operations (Campos et al., 2017). Discrete gates may also improve long-term memory by avoiding
the gradual change of state values introduced by repeated multiplication with continuous gate values
in standard recurrent architectures. Previous works on sparsely updating hidden states (Campos et al.,
2017; Neil et al., 2016) use a separate layer applied over the outputs of RNN, and do not modify the
RNN in itself. However, in this work, we modify the update gate in GRU (Cho et al., 2014) to take
binary values by sampling from a Bernoulli distribution (Fig. 2 [b] shows the architecture).

The input it to the recurrent model contains information about the action and is obtained by concate-
nating the previous image representation state zt−1 and action at followed by passing them through
a MLP layer. Similar to GRU (Cho et al., 2014), there is a reset and update gate. The reset gate vt
decides the extent of information flow from the previous recurrent state and inputs, and the update
gate ut tells which parts of the recurrent state will be updated. The update gate takes only binary
values, selecting whether the value will be updated or copied from previous time step. Binary values
are obtained by sampling from a Bernoulli distribution where the probability of sampling is obtained
using the previous recurrent state ht−1 and input it. Straight-through estimators (Bengio et al., 2013)
were used for propagating gradients backwards for training. The update equations are:

vt = σ(WT
v [ht−1, it] + bv)

ũt = σ(WT
u [ht−1, it] + bu)

h̃t = tanh(vt ∗ (WT
c [ht−1, it] + bc))

ut ∼ Bernoulli(ũt)

ht = ut ⊙ h̃t + (1− ut)⊙ ht−1,

(2)

where ⊙ denotes element-wise multiplication, σ and tanh are the sigmoid and hyperbolic tangent
activation function, and W∗ and b∗ denotes the weights and biases, respectively. To control the
sparsity of updates, we have used KL divergence between probability of sampling the update gate ũt
and a fixed prior probability κ, where κ is a tunable hyperparameter.

Loss function: The predictors for image and reward produces Gaussian distributions with unit
variance, whereas the discount predictor predicts a Bernoulli likelihood. The image representation

4



states are sampled from a Gaussian (Hafner et al., 2020) or a Categorical (Hafner et al., 2021)
distribution which are trained to maximize the likelihood of targets. In addition, there is a KL
Divergence term between the prior and posterior distributions and similar to DreamerV2 (Hafner
et al., 2021), we have also used KL balancing with a factor of 0.8. We have also added a sparsity loss
to regularize the number of updates in hidden state at each step. All the components of the world
model are optimized jointly using the loss function given by:

L(ϕ) .= Eqϕ(z1:T | a1:T ,x1:T )

[∑T
t=1 − ln pϕ(xt | ht, zt)

image log loss

− ln pϕ(rt | ht, zt)
reward log loss

− ln pϕ(γt | ht, zt)
discount log loss

+βKL
[
qϕ(zt | ht, xt)

∥∥ pϕ(zt | ht)]
KL loss

+αKL
[
ũt

∥∥ κ]
sparsity loss

]
,

(3)

where β and α are the scale for KL losses of the latent codes and the sparse update gates, respectively.

3 Simple Variational Sparse Gating

Stochastic State-Space Model (SSM) were proposed in PLaNet (Hafner et al., 2019), where it was
discussed that it is not trivial to achieve competitive results without the deterministic recurrent path.
Having a deterministic component was motivated to allow the transition model to retain information
for multiple time steps as the stochastic component induces variance (Hafner et al., 2019). In this
work, we show that having a purely stochastic component achieves comparable performance with
DreamerV2 while significantly outperforming SSMs (refer to Appendix H for more details). We
introduce a simplified version of VSG, called Simple Variational Sparse Gating (SVSG) where the
world model has a model state with single path to preserve information over multiple steps and also
account for partial observability in future states (Fig. 2 [c] presents the SVSG architecture).

Model Components: In SVSG, there is no recurrent model and the posterior state st is obtained
using the representation model by conditioning on the previous state st−1, input image xt and the
action at. Similar to VSG, there is a transition predictor that returns the prior state ŝt which does
not use the current image observation to imagine trajectories in the latent space. Both the modules
sparsely update the model state at each step using the stochastic gating mechanism proposed in VSG.
We have used a Gaussian distribution for the stochastic state with a learnable mean vector and a
learnable diagonal covariance matrix. Similar to VSG, the posterior state is used to reconstruct the
image, and predict the reward and discount factor. The components of world model in SVSG are:

Representation model: st ∼ qϕ(st | st−1, xt, at)

Transition predictor: ŝt ∼ pϕ(ŝt | st−1, at)

Image predictor: x̂t ∼ pϕ(x̂t | st)
Reward predictor: r̂t ∼ pϕ(r̂t | st)
Discount predictor: γ̂t ∼ pϕ(γ̂t | st).

(4)

The representation model qϕ and transition predictor pϕ are modified to output the posterior st and
prior ŝt states, respectively. The reset gate vt and the update gate ũt is calculated using the previous
state st−1 and input it which has the information about the action at. The candidate state s̃t at each
step is obtained using input it, reset gate vt and previous state st−1. Similar to VSG, the update gate
ut is sampled from a Bernoulli distribution to sparsely update the latent states at each step, given by:

vt = σ(WT
v [st−1, it] + bv)

ũt = σ(WT
u [st−1, it] + bu)

s̃t = tanh(vt ⊙ (WT
c [st−1, it] + bc))

ut ∼ Bernoulli(ũt),

(5)

where ⊙ denotes the element-wise multiplication, σ and tanh are the sigmoid and hyperbolic tangent
activation functions, and W∗ and b∗ denote the weights and biases, respectively.

The candidate state s̃t is feeded through MLP layers to get the prior and posterior distributions. The
image encoding xt was used to get posterior distribution, whereas the prior distribution was predicted
without it. The prior ẑt and posterior zt candidate states are sampled from these distributions, where

5



Figure 3: a) (Top Left) Full arena of the BringBackShapes (BBS) where the gray region around agent
shows the partial view received by it. The circular agent is located in the center of partial view and
is of teal blue color. The task is to push objects in the green goal region on the right side of arena.
b) (Bottom left) Scores obtained on BBS with Basic size and no distractors at 1M and 2.5M steps.
c) (Right) Performance (results over 5 seeds are reported) at different sizes of arena and number of
distractor objects (#Dist). VSG and SVSG outperforms DreamerV2 significantly in most scenarios.

the update gate sparsely modifies the previous latent state and outputs the prior ŝt and posterior st
model states at each step, respectively. The update equations are given by:

ẑt ∼ fp(s̃t)

zt ∼ fq(s̃t, xt)

ŝt = ut ⊙ ẑt + (1− ut)⊙ st−1

st = ut ⊙ zt + (1− ut)⊙ st−1,

(6)

where fp and fq denotes functions that output a distribution with learnable parameters for prior and
posterior, respectively. For SVSG, Categorical latents (Hafner et al., 2021) were not performing
well on our tasks. We attribute this to the fact that samples from a categorical distribution are binary
vectors and it is difficult to accurately reconstruct with such sparse latent representations. Lastly, we
observed that sparse gating mechanism introduced in VSG was important for convergence of SVSG.

Loss function: We have used the same loss function as described in Sec. 2 and policy is similar to
used in VSG (described in Appendix B). For training the SVSG model, we replace the KL loss term
between prior and posterior distributions in Eq. 3 with a masked KL loss that penalizes the state
dimensions that were updated in the corresponding time step, i.e. those for which the corresponding
element in ut is equal to 1. We found this to be necessary, since the original, unmasked KL loss did
not yield good performance, presumably due to its effect on state dimensions that were not updated.

4 Experiments

4.1 BringBackShapes

Environment: In this work, we developed the BringBackShapes (BBS) environment to test the
ability of agents to solve tasks in partially-observable and stochastic scenarios (see Fig. 3 [a]). The
task is to push the objects within the arena into a pre-specified goal area. Moreover, rewards are
sparse and is +1 for successfully pushing an object into the goal. At each time step, the agent only
receives an obfuscated view of the arena centered around its current position. This requires agents to
efficiently explore the arena to find new objects as well as remember states of previously observed
objects. The objects can collide with each other and the walls, which further requires the agent to
account for these events while updating its state. Stochasticity was introduced in the environment by

6



Figure 4: Learned behaviors of DreamerV2 (DV2), VSG and SVSG agents on BringBackShapes on
Basic size and with 2 distractor objects at different steps. DreamerV2 fails to capture that distrac-
tors (whitish cones) are noisy objects and tries to push them towards the goal, whereas VSG and
SVSG learn to avoid the noisy objects and carefully maneuvers the right objects towards the goal.

First-Visit
Time

Episode
Length

Objects Not
Visited (%)

Visited Objects
Not Scored (%)

First-Visit
Time

Episode
Length

Objects Not
Visited (%)

Visited Objects
Not Scored (%)

Basic, #Distractors=0 Medium, #Distractors=0

DV2 500.25 2503.55 4.6 14.67 1800.79 2994.91 50.2 33.68
VSG 276.20 1881.80 0.08 1.38 1360.32 2953.21 32.6 24.98
SVSG 365.08 2196.37 2.00 5.15 1375.99 2964.85 30.00 38.53

Basic, #Distractors=2 Medium, #Distractors=2

DV2 593.53 2908.73 6.40 35.90 1669.42 2998.51 40.80 45.48
VSG 330.74 2482.40 0.4 9.67 1051.29 2944.34 16.4 32.12
SVSG 313.95 2292.00 0.6 7.61 1484.09 2988.79 31.80 51.42

Table 1: Average values of the first-visit time, episode length, % of objects not visited, and % of
objects visited but not scored within an episode for trained agents on Basic and Medium environments,
and with 0 and 2 distractor objects respectively. Metrics were calculated for 50 episodes for 5 seeds.
VSG and SVSG significantly outperformed DreamerV2 on most statistics.

using random distractor objects. The distractor objects follow Brownian motion in any direction and
can’t be pushed into the goal area. Additionally, they add noise to the reward signal as they might
push objects into the goal, causing a reward that is not or only partially related to the agent’s behavior.
Due to partial-observability, such instances might not be visible to the agent, making the task even
more challenging. Refer to Appendix A for further description of the environment.

Experimental Setup: The BringBackShapes (BBS) environment returns high dimensional images of
shape 64× 64× 3 as observation. Action is a 2-dimensional continuous vector with acceleration and
direction as components. Episodes last for 3000 environment steps and an action repeat (Mnih et al.,
2016) of 4 was used. Baseline agents include DreamerV2 (Hafner et al., 2021) and DrQ-v2 (Yarats
et al., 2022). In Appendix C, we mention the hyperparameters for the proposed methods- VSG and
SVSG. The model was implemented using Tensorflow Probabability (Dillon et al., 2017) and trained
on a single NVIDIA V100 GPU with 16GB memory. Training time for DreamerV2, VSG and SVSG
methods on the BBS environment for 2.5M environment steps are around 12, 11 and 10.5 hours,
respectively. Lastly, results are reported across 5 seeds. 1

Quantitative Results: Fig. 3 [b] compares the proposed methods VSG and SVSG with the leading
RL agents- DreamerV2 (Hafner et al., 2021) and DrQ-V2 (Yarats et al., 2022). The score indicates
how many objects on average were scored within a episode. As discussed in Section 3, we trained
SVSG with Gaussian latents only. Upon evaluation at 2.5M timesteps, DreamerV2 achieves compet-
itive scores when compared to the proposed methods. Whereas at 1M steps, DreamerV2 does not
perform as well as VSG, which has mean score of 4.9. This shows that learning with sparsity priors
helps improve the sample efficiency. Furthermore, performance of SVSG is better than DreamerV2
but similar to VSG, demonstrating that a purely stochastic model can achieve similar performance.

Varying Partial-Observability and Stochasticy: We also study the effect of partial observability
and stochasticity. For partial-observability, we increased the size of the arena while reducing the
portion visible to the agent. We consider 4 configurations of the arena- Basic, Small, Medium and
Large. For stochasticity, we increase the number of distractor objects using values 0, 1, 2, and 4.
Fig. 3 [c] presents the plots of models trained at 2.5M steps at different sizes of the arena and number

1Code is available at: https://github.com/arnavkj1995/VSG.

7

https://github.com/arnavkj1995/VSG


0.0 0.2 0.4 0.6 0.8 1.0
0

200

400

600

800

1000

Sc
or

e

Cartpole Swingup

0.0 0.2 0.4 0.6 0.8 1.0
0

200

400

600

800

1000
Cheetah Run

0.0 0.2 0.4 0.6 0.8 1.0
0

200

400

600

800

1000
Finger Spin

0.0 0.2 0.4 0.6 0.8 1.0
0

200

400

600

800

1000
Pendulum Swingup

0.0 0.2 0.4 0.6 0.8 1.0
Steps 1e6

0

200

400

600

800

1000

Sc
or

e

Quadruped Run

0.0 0.2 0.4 0.6 0.8 1.0
Steps 1e6

0

200

400

600

800

1000
Quadruped Walk

0.0 0.2 0.4 0.6 0.8 1.0
Steps 1e6

0

200

400

600

800

1000
Reacher Hard

0.0 0.2 0.4 0.6 0.8 1.0
Steps 1e6

0

200

400

600

800

1000
Walker Run

VSG SVSG DreamerV2 DreamerV1 D4PG (1e9 steps) SLAC (3e6 steps) DrQV2

Figure 5: Comparison of VSG and SVSG with DreamerV1 (Hafner et al., 2020) and Dream-
erV2 (Hafner et al., 2021) on the DeepMind Control Suite. VSG converges faster on many tasks as
demonstrated by evaluation curves. Even with a single stochastic path, SVSG achieves performance
competitive to the models that use a combination of multiple paths.

of distractor objects. It can be observed that increasing the size of arena makes it harder to score
objects. VSG was found to outperform DreamerV2 across all arena sizes. However, SVSG did not
perform well on larger arena sizes. Adding noisy distractor objects led to drop in final performance
of all models. But VSG and SVSG still outperformed DreamerV2, indicating that the sparsity prior
helps in ignoring the noisy objects in the arena while solving the task.

Ablation Studies: In this work, we also report statistics to describe the behavior of learned agents.
First-visit time is the number of episode steps taken to visit an object (when object is completely
visible in the agent’s view) and is calculated by averaging the first-visit time of each object in the
arena. Lower first-visit time indicates that an agent is able to quickly discover all the objects in the
arena. Another metric is Episode Length which denotes the number of steps taken by the agent to
complete the task. The maximum of these scores was set to 3000. We also report the percentage
of objects that were visited within an episode which represents the ability of agents to explore all
parts of the arena to find novel objects. Lastly, we report the percentage of visited objects that were
not scored which indicates us that the agent might not be remembering positions of objects seen
previously. Thus, agents might have to explore the arena again to find them leading to an increase in
time taken to finish the task. Table 1 presents the results on different settings of the environment and
it can be observed that VSG and SVSG outperform DreamerV2 significantly.

Qualitative Results: We also observed the maneuvers taken by the agents to push the objects to
the goal. The DreamerV2 agent was able to recognize objects and go behind them to push, but
did not follow a smooth trajectory and was spending more time around an object to push it in the
goal. However, our methods showed smoother trajectories and were more efficient at pushing objects
successfully in the goal area. Additionally, our methods learned to avoid noisy distractor objects
whereas the DreamerV2 agent was colliding with them and was trying to push them to the goal (see
Fig. 4 and supplementary material for more videos).

Effect of Sparse Gating: We conducted an experiment where the learned world model was given
the first 15 frames and 5 different rollouts were generated in the latent space for the next 35 frames.
The sequence of actions is kept fixed across rollouts. The aim was to observe if the sparse gating
mechanism is helping the model to retain information for longer time steps and the imagined
trajectories are consistent. It was observed in Appendix J that learned world model in VSG and
SVSG remembers the color and location of objects, and is also cognizant about the goal location and
walls. Furthermore, unrolled trajectories from the world model of DreamerV2 showed distortion in
the shapes, and in some instances modifies the color of the objects.

4.2 DeepMind Control Suite

Experimental Setup: The proposed method is evaluated on a few tasks from DeepMind Control
Suite (Tassa et al., 2018). Observations for the agents are high dimensional images of shape 64×64×3,
actions range between 1 to 12 dimensions, and episodes last for 1000 steps. An action repeat (Mnih
et al., 2016) of 2 was used. The model was implemented using Tensorflow Probabability (Dillon

8



et al., 2017) and trained on a single NVIDIA V100 GPU with 16GB memory in less than 6 hours.
The agents were trained for 1M environment steps. Baselines include DreamerV1 (Hafner et al.,
2020), DreamerV2 (Hafner et al., 2021), DrQ-v2 (Yarats et al., 2022), D4PG (Barth-Maron et al.,
2018), and A3C (Mnih et al., 2016). Except A3C, all baselines learn policies from high dimensional
pixel inputs. DreamerV2 was trained using the implementation provided by the authors. For other
baselines, the metrics provided by the respective authors were used for comparison. Lastly, returns
averaged across 5 seeds were reported.

Results: Figure 5 presents comparison of VSG and SVSG with the baseline agents (Refer to Ap-
pendix D for comparison on more tasks). It can be observed that on most tasks, VSG performs
comparable to or better than DreamerV2 (Hafner et al., 2021). Notably, VSG significantly outper-
forms DreamerV2 on Quadruped and Finger-Spin tasks. Furthermore, SVSG with a purely stochastic
component has similar performance to DreamerV2, outperforming on Finger Spin and Quadruped
tasks and performing worse on Cartpole Swingup and Cheetah Run tasks. In addition, SVSG signif-
icantly outperforms DreamerV1 on many tasks which also used Gaussian latents and RSSM with
multiple paths. Lastly, we also present the importance of sparsity loss in VSG (See Appendix I.3),
and of KL Masking and Sparsity loss in SVSG (see Appendix E.2).

Ablation Studies: In BBS, we added noise in the environment by having distractor objects. We
also experimented with other forms of noise where natural videos are used in the background for
DeepMind Control tasks (Zhang et al., 2021; Nguyen et al., 2021b). Since reconstruction-free
model based RL (Deng et al., 2021; Nguyen et al., 2021a) perform better than reconstruction based
agents (Hafner et al., 2021) in such scenarios, we updated the RSSM block in DreamerPro (Deng
et al., 2021) with VSG and call it VSGPro, and trained it on DMC with natural background (Refer to
Appendix F). We also experimented with VSG in discrete control tasks from the Atari benchmark in
Appendix G, where VSG performed better on task with changing viewpoints.

5 Related Work

Latent Dynamics Models: Latent dynamics models (Bourlard and Morgan, 2012; Kalman, 1960;
Bengio et al., 1999) operate directly on sequences predicted in the latent space rather than autoregres-
sively feeding back the generated frames back to the model. Recent advancements in deep learning
have allowed learning expressive latent dynamics models using stochastic backpropagation (Kingma
and Welling, 2013; Chung et al., 2015; Krishnan et al., 2015; Karl et al., 2016). Recurrent State-
Space Model (RSSM) (Hafner et al., 2019) comprises of stochastic and deterministic components.
VideoFlow (Kumar et al., 2019) predicted future values of the latent state by normalizing flows
for robotic object interactions. Hierarchical latent models for video prediction were proposed in
CWVAEs (Saxena et al., 2021) with levels ticking at different intervals in time. (Franceschi et al.,
2020) and (Donà et al., 2021) disentangled dynamic and static factors where 2-5 initial observations
was used to estimate the static component.

RL for Visual Control: Deep Reinforcement Learning (DRL) methods fall into one of two categories:
1) Model-Based — where an explicit model of the environment and its dynamics are learned (Ha
and Schmidhuber, 2018; Hafner et al., 2019; 2020; 2021; Zhang et al., 2019; Kaiser et al., 2019),
and 2) Model-Free — where a policy is learned directly from the raw observations (Srinivas et al.,
2020; Kostrikov et al., 2020b; Lillicrap et al., 2015; Yarats et al., 2022; Schwarzer et al., 2021;
Mondal et al., 2022). Deep Deterministic Policy Gradient (DDPG) (Lillicrap et al., 2015) combined
actor-critic with insights from DQNs (Mnih et al., 2015) to learn agents for continuous action
spaces. TD3 (Fujimoto et al., 2018) builds upon the DDPG algorithm and addresses the problem of
overestimation bias in the value function. CURL (Srinivas et al., 2020) uses contrastive losses to
learn discriminative representations. DrQ (Kostrikov et al., 2020a) and DrQ-v2 (Yarats et al., 2022)
employed data augmentation techniques and do not use auxiliary losses or pre-training. RSSM was
introduced in PlaNet (Hafner et al., 2019) and was employed for online planning in the latent space.
DreamerV1 (Hafner et al., 2020) and DreamerV2 (Hafner et al., 2021) achieved state-of-the-art
results on DMC (Tassa et al., 2018) and Atari (Bellemare et al., 2013), respectively. SimPLe (Kaiser
et al., 2019) trains a PPO (Schulman et al., 2017) agent on the learned video generation model in
pixel space. SOLAR (Zhang et al., 2019) solved robotics tasks via guided policy search.

Sparsity in RNN: Neural networks have widely adopted sparsity to reduce the memory footprint
of weights and activations (LeCun et al., 1990; Chen et al., 2015; Han et al., 2015). Several works
have explored sparsity in RNNs. Campos et al. (2017) introduced a mechanism in RNNs that learns

9



to skip state updates, effectively reducing the number of sequential operations on the latent state,
thereby alleviating the problem of vanishing gradients in training on long sequences. Goyal et al.
(2019) presented Recurrent Independent Mechanism (RIM), an architecture that consists of separate
recurrent modules which are sparsely updated using a learned attention mechanism. In contrast to
RIM, the number of updated state variables in VSG algorithm is not fixed.

6 Discussion

In this work, we introduce VSG and SVSG, two latent dynamics models leveraging sparse state
updates. The sparse update prior was found to facilitate more efficient behaviors in tasks requiring
long-horizon planning. Furthermore, SVSG is a purely stochastic model with a single component
in the model state. We show that VSG and SVSG can outperform leading agents on the proposed
BringBackShapes task, a challenging partially-observable and stochastic environment. BBS allows
for controlling different factors of variation like stochasticity and partial-observability. Experiments
conducted on various variations in BBS demonstrate that the proposed agents are more robust to
noise in the environment and can better retain information of seen objects. Some limitations and
potential research directions for future research are as follows:

• In the current implementation of VSG, the latent space does not exhibit disentanglement which
could be an interesting direction for future research. Gating mechanisms in VSG can also be
combined with other recurrent architectures like RIM (Goyal et al., 2019).

• In this work, BBS was explored with only 2 factors of variation: partial-observability and
stochasticity. More controllable factors like the nature of entities (shape, size, color of objects),
underlying physics (mass, friction, elasticity), or procedural background generation can be
introduced to further study generalization capabilities of RL agents.

• SVSG being a purely stochastic model can further be used to estimate state uncertainty by
marginalizing over multiple samples paths to efficiently explore in an unknown environment.

• Evaluation on first-person view 3D games like tasks in DMLab (Beattie et al., 2016) would be
interesting. Furthermore, a 3D version of the BBS environment with the viewpoints changing
with rotation of agent and the underlying physics will make the task more challenging.

• We have used small latent dimensions and it would be interesting to train such models with larger
architectures and on more complex tasks. Scaling the current architecture would also require
optimizing the implementation to make them computationally feasible.

• Categorical latents outperformed Gaussian latents as the stochastic states of RSSM (Hafner et al.,
2021), especially for discrete control tasks. However, SVSG was not found to work well with
Categorical latents and we believe that sampled sparse states are hard to optimize.

• Model-based RL for visual control is still in early stages. However, a major challenge with
deploying such models in the real world is safety especially during exploration. This would
require an accurate world model that allows learning policies with stringent safety constraints
that avoid mistakes when deployed in the real world. Such algorithms will rely on models that
are robust when transferred from simulation to the real world.

Acknowledgements

The authors would like to thank David Meger, Lucas Lehnert and Ankesh Anand for their valuable
feedback and discussions. The text also benefited from discussions with Abhinav Agarwalla, Rupali
Bhati and Vineet Jain. The authors are also grateful to CIFAR for funding and the Digital Research
Alliance of Canada for computing resources.

References

Mohammad Babaeizadeh, Chelsea Finn, Dumitru Erhan, Roy H Campbell, and Sergey Levine.
Stochastic variational video prediction. arXiv preprint arXiv:1710.11252, 2017.

Gabriel Barth-Maron, Matthew W Hoffman, David Budden, Will Dabney, Dan Horgan, Alistair
Muldal, Nicolas Heess, and Timothy Lillicrap. Distributed distributional deterministic policy
gradients. arXiv preprint arXiv:1804.08617, 2018.

10



Charles Beattie, Joel Z Leibo, Denis Teplyashin, Tom Ward, Marcus Wainwright, Heinrich Küttler,
Andrew Lefrancq, Simon Green, Víctor Valdés, Amir Sadik, et al. Deepmind lab. arXiv preprint
arXiv:1612.03801, 2016.

Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning environ-
ment: An evaluation platform for general agents. Journal of Artificial Intelligence Research, 47:
253–279, 2013.

Yoshua Bengio, Patrice Simard, and Paolo Frasconi. Learning long-term dependencies with gradient
descent is difficult. IEEE transactions on neural networks, 5(2):157–166, 1994.

Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating gradients through
stochastic neurons for conditional computation. arXiv preprint arXiv:1308.3432, 2013.

Yoshua Bengio et al. Markovian models for sequential data. Neural computing surveys, 2(199):
129–162, 1999.

Herve A Bourlard and Nelson Morgan. Connectionist speech recognition: a hybrid approach, volume
247. Springer Science & Business Media, 2012.

Víctor Campos, Brendan Jou, Xavier Giró-i Nieto, Jordi Torres, and Shih-Fu Chang. Skip rnn:
Learning to skip state updates in recurrent neural networks. arXiv preprint arXiv:1708.06834,
2017.

Wenlin Chen, James Wilson, Stephen Tyree, Kilian Weinberger, and Yixin Chen. Compressing
neural networks with the hashing trick. In International conference on machine learning, pages
2285–2294. PMLR, 2015.

Maxime Chevalier-Boisvert, Lucas Willems, and Suman Pal. Minimalistic gridworld environment
for openai gym, 2018.

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. Learning phrase representations using rnn encoder-decoder for
statistical machine translation. arXiv preprint arXiv:1406.1078, 2014.

Kurtland Chua, Roberto Calandra, Rowan McAllister, and Sergey Levine. Deep reinforcement
learning in a handful of trials using probabilistic dynamics models. Advances in neural information
processing systems, 31, 2018.

Junyoung Chung, Kyle Kastner, Laurent Dinh, Kratarth Goel, Aaron C Courville, and Yoshua Bengio.
A recurrent latent variable model for sequential data. In Advances in neural information processing
systems, pages 2980–2988, 2015.

Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and accurate deep network
learning by exponential linear units (elus). arXiv preprint arXiv:1511.07289, 2015.

Fei Deng, Ingook Jang, and Sungjin Ahn. Dreamerpro: Reconstruction-free model-based reinforce-
ment learning with prototypical representations. arXiv preprint arXiv:2110.14565, 2021.

Joshua V Dillon, Ian Langmore, Dustin Tran, Eugene Brevdo, Srinivas Vasudevan, Dave Moore,
Brian Patton, Alex Alemi, Matt Hoffman, and Rif A Saurous. Tensorflow distributions. arXiv
preprint arXiv:1711.10604, 2017.

Jérémie Donà, Jean-Yves Franceschi, Sylvain Lamprier, and Patrick Gallinari. {PDE}-driven
spatiotemporal disentanglement. In International Conference on Learning Representations, 2021.

Jean-Yves Franceschi, Edouard Delasalles, Mickaël Chen, Sylvain Lamprier, and Patrick Gallinari.
Stochastic latent residual video prediction. In International Conference on Machine Learning,
pages 3233–3246. PMLR, 2020.

Scott Fujimoto, Herke van Hoof, and David Meger. Addressing function approximation error in
actor-critic methods. arXiv preprint arXiv:1802.09477, 2018.

Anirudh Goyal, Alex Lamb, Jordan Hoffmann, Shagun Sodhani, Sergey Levine, Yoshua Bengio, and
Bernhard Schölkopf. Recurrent independent mechanisms. arXiv preprint arXiv:1909.10893, 2019.

11



David Ha and Jürgen Schmidhuber. World models. arXiv preprint arXiv:1803.10122, 2018.

Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas, David Ha, Honglak Lee, and James
Davidson. Learning latent dynamics for planning from pixels. In Kamalika Chaudhuri and Ruslan
Salakhutdinov, editors, Proceedings of the 36th International Conference on Machine Learning,
volume 97 of Proceedings of Machine Learning Research, pages 2555–2565. PMLR, 09–15 Jun
2019. URL https://proceedings.mlr.press/v97/hafner19a.html.

Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream to control: Learning
behaviors by latent imagination. In International Conference on Learning Representations, 2020.
URL https://openreview.net/forum?id=S1lOTC4tDS.

Danijar Hafner, Timothy P Lillicrap, Mohammad Norouzi, and Jimmy Ba. Mastering atari with
discrete world models. In International Conference on Learning Representations, 2021. URL
https://openreview.net/forum?id=0oabwyZbOu.

Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural networks
with pruning, trained quantization and huffman coding. arXiv preprint arXiv:1510.00149, 2015.

Sepp Hochreiter. Untersuchungen zu dynamischen neuronalen netzen. Diploma, Technische Univer-
sität München, 91(1), 1991.

Lukasz Kaiser, Mohammad Babaeizadeh, Piotr Milos, Blazej Osinski, Roy H Campbell, Konrad
Czechowski, Dumitru Erhan, Chelsea Finn, Piotr Kozakowski, Sergey Levine, et al. Model-based
reinforcement learning for atari. arXiv preprint arXiv:1903.00374, 2019.

Rudolph Emil Kalman. A new approach to linear filtering and prediction problems. Journal of basic
Engineering, 82(1):35–45, 1960.

Maximilian Karl, Maximilian Soelch, Justin Bayer, and Patrick van der Smagt. Deep variational
bayes filters: Unsupervised learning of state space models from raw data. arXiv preprint
arXiv:1605.06432, 2016.

Diederik P Kingma and Prafulla Dhariwal. Glow: Generative flow with invertible 1x1 convolutions.
arXiv preprint arXiv:1807.03039, 2018.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

Ilya Kostrikov, Denis Yarats, and Rob Fergus. Image augmentation is all you need: Regularizing
deep reinforcement learning from pixels. arXiv preprint arXiv:2004.13649, 2020a.

Ilya Kostrikov, Denis Yarats, and Rob Fergus. Image augmentation is all you need: Regularizing
deep reinforcement learning from pixels. arXiv preprint arXiv:2004.13649, 2020b.

Rahul G Krishnan, Uri Shalit, and David Sontag. Deep kalman filters. arXiv preprint
arXiv:1511.05121, 2015.

Manoj Kumar, Mohammad Babaeizadeh, Dumitru Erhan, Chelsea Finn, Sergey Levine, Laurent
Dinh, and Durk Kingma. Videoflow: A flow-based generative model for video. arXiv preprint
arXiv:1903.01434, 2(5), 2019.

Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson, Richard E Howard, Wayne
Hubbard, and Lawrence D Jackel. Backpropagation applied to handwritten zip code recognition.
Neural computation, 1(4):541–551, 1989.

Yann LeCun, John S Denker, and Sara A Solla. Optimal brain damage. In Advances in neural
information processing systems, pages 598–605, 1990.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971, 2015.

12

https://proceedings.mlr.press/v97/hafner19a.html
https://openreview.net/forum?id=S1lOTC4tDS
https://openreview.net/forum?id=0oabwyZbOu


Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare,
Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control
through deep reinforcement learning. Nature, 518(7540):529, 2015.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement
learning. In International Conference on Machine Learning, pages 1928–1937, 2016.

Arnab Kumar Mondal, Vineet Jain, Kaleem Siddiqi, and Siamak Ravanbakhsh. EqR: Equiv-
ariant representations for data-efficient reinforcement learning. In Kamalika Chaudhuri, Ste-
fanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato, editors, Proceed-
ings of the 39th International Conference on Machine Learning, volume 162 of Proceed-
ings of Machine Learning Research, pages 15908–15926. PMLR, 17–23 Jul 2022. URL
https://proceedings.mlr.press/v162/mondal22a.html.

Daniel Neil, Michael Pfeiffer, and Shih-Chii Liu. Phased lstm: Accelerating recurrent network
training for long or event-based sequences. arXiv preprint arXiv:1610.09513, 2016.

Tung D Nguyen, Rui Shu, Tuan Pham, Hung Bui, and Stefano Ermon. Temporal predictive coding
for model-based planning in latent space. In International Conference on Machine Learning, pages
8130–8139. PMLR, 2021a.

Tung D Nguyen, Rui Shu, Tuan Pham, Hung Bui, and Stefano Ermon. Temporal predictive coding for
model-based planning in latent space. In Marina Meila and Tong Zhang, editors, Proceedings of
the 38th International Conference on Machine Learning, volume 139 of Proceedings of Machine
Learning Research, pages 8130–8139. PMLR, 18–24 Jul 2021b. URL https://proceedings.
mlr.press/v139/nguyen21h.html.

Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation and
approximate inference in deep generative models. In Eric P. Xing and Tony Jebara, editors,
Proceedings of the 31st International Conference on Machine Learning, volume 32 of Proceedings
of Machine Learning Research, pages 1278–1286, Bejing, China, 22–24 Jun 2014. PMLR. URL
https://proceedings.mlr.press/v32/rezende14.html.

Reuven Y Rubinstein. Optimization of computer simulation models with rare events. European
Journal of Operational Research, 99(1):89–112, 1997.

Vaibhav Saxena, Jimmy Ba, and Danijar Hafner. Clockwork variational autoencoders. In A. Beygelz-
imer, Y. Dauphin, P. Liang, and J. Wortman Vaughan, editors, Advances in Neural Information
Processing Systems, 2021. URL https://openreview.net/forum?id=fU7-so5RRhW.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Max Schwarzer, Ankesh Anand, Rishab Goel, R Devon Hjelm, Aaron Courville, and Philip Bach-
man. Data-efficient reinforcement learning with self-predictive representations. In International
Conference on Learning Representations, 2021. URL https://openreview.net/forum?id=
uCQfPZwRaUu.

Aravind Srinivas, Michael Laskin, and Pieter Abbeel. Curl: Contrastive unsupervised representations
for reinforcement learning. arXiv preprint arXiv:2004.04136, 2020.

Richard S Sutton. Dyna, an integrated architecture for learning, planning, and reacting. ACM SIGART
Bulletin, 2(4):160–163, 1991.

Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David Budden,
Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, et al. Deepmind control suite. arXiv preprint
arXiv:1801.00690, 2018.

Manuel Watter, Jost Springenberg, Joschka Boedecker, and Martin Riedmiller. Embed to control:
A locally linear latent dynamics model for control from raw images. In Advances in neural
information processing systems, pages 2746–2754, 2015.

13

https://proceedings.mlr.press/v162/mondal22a.html
https://proceedings.mlr.press/v139/nguyen21h.html
https://proceedings.mlr.press/v139/nguyen21h.html
https://proceedings.mlr.press/v32/rezende14.html
https://openreview.net/forum?id=fU7-so5RRhW
https://openreview.net/forum?id=uCQfPZwRaUu
https://openreview.net/forum?id=uCQfPZwRaUu


Denis Yarats, Rob Fergus, Alessandro Lazaric, and Lerrel Pinto. Mastering visual continuous control:
Improved data-augmented reinforcement learning. In International Conference on Learning
Representations, 2022. URL https://openreview.net/forum?id=_SJ-_yyes8.

Amy Zhang, Rowan Thomas McAllister, Roberto Calandra, Yarin Gal, and Sergey Levine. Learning
invariant representations for reinforcement learning without reconstruction. In International
Conference on Learning Representations, 2021. URL https://openreview.net/forum?id=
-2FCwDKRREu.

Marvin Zhang, Sharad Vikram, Laura Smith, Pieter Abbeel, Matthew Johnson, and Sergey Levine.
Solar: deep structured representations for model-based reinforcement learning. In International
Conference on Machine Learning, 2019.

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] See Section 6.
(c) Did you discuss any potential negative societal impacts of your work? [Yes] Described

in the section with limitations.
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes] The code for
the model and dataset is in the supplementary material. There is a README file with
the instructions to run them.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] We have specified the hyperparameters in Appendix C.

(c) Did you report error bars (e.g., with respect to the random seed after running exper-
iments multiple times)? [Yes] All the results and plots presented in Section 4 and
Appendix were obtained after training on multiple seeds ranging from 3-5.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] We have mentioned about the
GPUs and time taken to run on a single seed in the implementation details for each
environment.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [No] We used the implementation of

DreamerV2, DreamerPro and DrQ-v2 provided by the authors with MIT license. For
comparison with DBC, we thank the authors for sharing the evaluation logs.

(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
The code for the new environment (BBS) is included in the supplementary material.

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [Yes]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]

14

https://openreview.net/forum?id=_SJ-_yyes8
https://openreview.net/forum?id=-2FCwDKRREu
https://openreview.net/forum?id=-2FCwDKRREu


(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

15



Appendix

A BringBackShapes

The environment has a circular blue agent which can move in any direction. The shapes and colors of
the objects are uniformly sampled from a predefined set with 5 shapes and 5 colors, respectively. As
there are 5 objects in the arena for each episode, there are 255 ∼ 9.8M possible combinations. The
initial positions of the agent and objects are randomly chosen within the arena. The elasticity of the
objects and the agent is 1.0, while the walls have an elasticity of 0.7. There is a damping factor of
0.3 applied to the velocities of all objects and the agent. In Figure 3 [a], we show a full view of the
whole arena at the beginning of an episode, and the gray region around the agent is its view. It can be
observed that the agent might see none or all of the objects in its view and needs to explore in the
environment to look for the objects in order to push them towards the goal (green region in Figure 3
[a]). The agent receives image observations of size 64 × 64 × 3 from the environment. The action
space is continuous and comprises of the angle and magnitude of force applied by the agent. The
rewards are sparse and agent receives a reward of +1 for successfully pushing an object into the goal
area. An episode terminates once all objects are pushed into the goal or if 3000 steps are completed.
In this work, agents were trained for 2.5M environment steps and an action repeat of 4 was used.
Evaluation was performed across 5 seeds with 10 episodes for each seed, and means and standard
deviations across the seeds are reported.

Our motivation behind creating BBS was to have a simple benchmark where the factors of variation
can be controlled. For instance, in the current version, we add stochasticity and partial-observability.
We believe future work can test for generalization to differences in the controllable factors between
training and testing. These factors of variation specify the context of the MDP formalism of the task
that the agent is trying to solve. If we have control over varying the context, we can define the training
and the test distributions and this can enable us to formalize the class of generalisation problems we
are focusing on. Furthermore, the environment can also be extended for open-ended learning where
the agent has to learn an ever-increasing set of behaviours and abilities. Lastly, this can be further
extended to multi-agent setting where the behaviour we expect to see is the emergence of some kind
of cooperation between agents.

B Behavior Learning

The policy is trained by generating trajectories in the latent space obtained from the learned world
model. The policy comprises of a stochastic actor and a deterministic critic to learn behaviours
in the latent space. The actor learns to choose the most optimal actions conditioned on the model
state (ât ∼ pψ(ât | ŝt)). The critic estimates the discounted sum of future rewards that are beyond

the planning horizon (vξ(ŝt) ≈ Epϕ,pψ

[∑
τ≥t γ̂

τ−tr̂τ

]
). To obtain the latent trajectories, the initial

model state is extracted from the collected data. The actor network provides the action ât, which is
used to obtain the prior states ẑt at each step. Since the agent does not act using these actions in the
environment, the prior distributions are used to sample the state and reward predictor provides the
reward r̂t. Furthermore, the value network provides the discounted sum of future rewards from that
state. The actor and critic optimize different objectives:

Critic Loss: Temporal Difference learning is used to update the parameters of the critic. The target
is estimated by combining the predicted rewards from latent model states and value estimates from
critic. The weighted average of n-step returns (Vλ) proposed in DreamerV1 (Hafner et al., 2020)
is used. The critic parameters (ξ) are optimized using the mean-squared error (MSE) between the
predicted value and the λ-target over all the states in a trajectory, given by:

L(ξ) .= Epϕ,pψ

[
1

H−1

∑H−1
t=1

1
2

(
vξ(ŝt)− sg(V λt )

)2]
, (7)

where sg denotes stopping gradients at the target while updating the critic, and H denotes the length
of the planning horizon in latent space which was kept to 15 in our experiments. Furthermore, the
targets are computed using a copy of the critic which is updated after every 100 gradient steps.

Actor Loss: The actor is trained to maximize the λ-return computed for training the critic. The
reparameterization trick (Hafner et al., 2020; Kingma and Dhariwal, 2018; Rezende et al., 2014) was

16



used to backpropagate gradients from the value estimate. The entropy of the actor distribution is also
regularized to encourage exploration. For training, ηd = 1.0 and the entropy regularizer ηe = 10−4

was used. The loss for training the actor parameters (ϕ) is given by:

L(ψ) .= Epϕ,pψ

[
1

H−1

∑H−1
t=1

(
−ηdV λt
dynamics
backprop

−ηeH[at|ŝt]
entropy regularizer

)]
.

(8)

C Hyper Parameters

Name VSG SVSG

World Model

Batch Size 16 16
Sequence Length 50 50
Recurrent state dimensions 1024 1024
Image Representation num classes 32 -
Image Representation class dimension 32 -
KL Loss Scale 1.0 1.0
KL Balancing 0.8 0.8
Sparsity Loss Scale 0.1 0.1
Prior gate probability κ 0.3 / 0.4 0.3 / 0.4
World Model learning rate 3× 10−4 8× 10−4

Reward transformation Identity Identity

Behavior

Imagination Horizon 15 15
Discount 0.99 0.99
λ-target parameter 0.95 0.95
Actor Gradient Mixing 0.1 0.1
Actor Entropy Loss Scale 1× 10−4 / 2× 10−3 1× 10−4 / 2× 10−3

Actor Learning Rate 8× 10−5 8× 10−5

Critic Learning Rate 8× 10−5 8× 10−5

Slow critic update inverval 100 100

Common

Environment steps per update 5 5
MLP number of layers 4 4
MLP number of units 400 400
Gradient clipping 100 100
Adam epsilon 1× 10−5 1× 10−5

Weight decay 1× 10−6 1× 10−6

Total Parameters 32.3M 30.8M

Table 2: Hyper parameters of VSG and SVSG. When parameters are separated by /, the left hand
side value is for BBS and the right hand side value is for other environments. When tuning the
agent for a new task, we recommend searching over the KL loss scale β ∈ {0.1, 0.3, 1, 3}, prior gate
probability κ ∈ {0.3, 0.4, 0.5} and the discount factor γ ∈ {0.99, 0.999}.

17



D Scores on Deepmind Control Suite

0.0 0.2 0.4 0.6 0.8 1.0
0

200

400

600

800

1000
Sc

or
e

Cartpole Swingup

0.0 0.2 0.4 0.6 0.8 1.0
0

200

400

600

800

1000
Cheetah Run

0.0 0.2 0.4 0.6 0.8 1.0
0

200

400

600

800

1000
Finger Spin

0.0 0.2 0.4 0.6 0.8 1.0
0

200

400

600

800

1000

Sc
or

e

Finger Turn Hard

0.0 0.2 0.4 0.6 0.8 1.0
0

200

400

600

800

1000
Hopper Stand

0.0 0.2 0.4 0.6 0.8 1.0
0

200

400

600

800

1000
Pendulum Swingup

0.0 0.2 0.4 0.6 0.8 1.0
0

200

400

600

800

1000

Sc
or

e

Quadruped Run

0.0 0.2 0.4 0.6 0.8 1.0
0

200

400

600

800

1000
Quadruped Walk

0.0 0.2 0.4 0.6 0.8 1.0
0

200

400

600

800

1000
Reacher Easy

0.0 0.2 0.4 0.6 0.8 1.0
Steps 1e6

0

200

400

600

800

1000

Sc
or

e

Reacher Hard

0.0 0.2 0.4 0.6 0.8 1.0
Steps 1e6

0

200

400

600

800

1000
Walker Run

0.0 0.2 0.4 0.6 0.8 1.0
Steps 1e6

0

200

400

600

800

1000
Walker Walk

VSG SVSG DreamerV2 DreamerV1 D4PG (1e9 steps) SLAC (3e6 steps) DrQV2

Figure 6: Comparison of VSG and SVSG with leading algorithms like DreamerV1 (Hafner et al.,
2020), DreamerV2 (Hafner et al., 2021) and DrQ-V2 (Yarats et al., 2022) on tasks from the DeepMind
Control Suite.

In Fig. 6, we present the scores on 12 tasks from DMControl Suite. VSG was found to perform
better on 4 tasks and was competitive on 7 tasks when compared with DreamerV2. Furthermore,
SVSG when compared with DreamerV1 which also used Gaussian latents, was found to perform better
on 8 tasks and had similar performance on 2 tasks. This demonstrates that using Gaussian latents
with a single path and sparse gating mechanism can achieve competitive results when compared to
leading methods and is better than previous methods using Gaussian latents.

18



E Ablations Studies

In this section, we present ablation experiments on the DeepMind Control Suite (Tassa et al., 2018).

E.1 Sparsity Loss in VSG

0 1 2 3 4 5
0

200

400

600

800

1000

Sc
or

e

Cartpole Swingup

0 1 2 3 4 5
0

200

400

600

800

1000
Cheetah Run

0 1 2 3 4 5
0

200

400

600

800

1000
Finger Spin

0 1 2 3 4 5
0

200

400

600

800

1000

Sc
or

e

Finger Turn Hard

0 1 2 3 4 5
0

200

400

600

800

1000
Hopper Stand

0 1 2 3 4 5
0

200

400

600

800

1000
Quadruped Run

0 1 2 3 4 5
Steps 1e5

0

200

400

600

800

1000

Sc
or

e

Quadruped Walk

0 1 2 3 4 5
Steps 1e5

0

200

400

600

800

1000
Reacher Easy

0 1 2 3 4 5
Steps 1e5

0

200

400

600

800

1000
Walker Run

VSG NoSparsityLoss

Figure 7: Ablation study showing the performance of VSG on 9 tasks tasks from DMC trained with
(VSG) and without the sparsity penalty (NoSparsityLoss). VSG without the sparsity loss on update
gate probabilities was found to significantly underperform on 5 out of 9 tasks from DM Control Suite.

19



E.2 Sparsity Loss and KL Mask in SVSG

0 1 2 3 4 5
0

200

400

600

800

1000
Sc

or
e

Cartpole Swingup

0 1 2 3 4 5
0

200

400

600

800

1000
Cheetah Run

0 1 2 3 4 5
0

200

400

600

800

1000
Finger Spin

0 1 2 3 4 5
0

200

400

600

800

1000

Sc
or

e

Finger Turn Hard

0 1 2 3 4 5
0

200

400

600

800

1000
Hopper Stand

0 1 2 3 4 5
0

200

400

600

800

1000
Quadruped Run

0 1 2 3 4 5
Steps 1e5

0

200

400

600

800

1000

Sc
or

e

Quadruped Walk

0 1 2 3 4 5
Steps 1e5

0

200

400

600

800

1000
Reacher Easy

0 1 2 3 4 5
Steps 1e5

0

200

400

600

800

1000
Walker Run

SVSG NoSparsityLoss NoKLmask

Figure 8: Ablation study comparing the performance of different SVSG models on DMC. We
compare training with both KL masking and sparsity penalty (SVSG), with only sparsity penalty
(NoKLmask), and with only KL masking (NoSparsityLoss).

20



F DMC with Natural Background

0 1 2 3 4 50
200
400
600
800

1000
Sc

or
e

Cartpole Swingup

0 1 2 3 4 50
200
400
600
800

1000 Cheetah Run

0 1 2 3 4 50
200
400
600
800

1000 Cup Catch

0 1 2 3 4 5
Steps 1e5

0
200
400
600
800

1000

Sc
or

e

Finger Spin

0 1 2 3 4 5
Steps 1e5

0
200
400
600
800

1000 Reacher Easy

0 1 2 3 4 5
Steps 1e5

0
200
400
600
800

1000 Walker Run

DreamerPro VSGPro DBC

Figure 9: Results on DMC with Natural background setting.

To evaluate the efficacy of sparse gating mechanism in another setting with noise, we also experi-
mented on DMC with noisy background (Zhang et al., 2021; Nguyen et al., 2021a). Reconstruction
free model-based RL have been found to perform better on tasks with distractive backgrounds as
they don’t have reconstructive loss to generate the noisy frames. We updated the RSSM in Dreamer-
Pro (Deng et al., 2021) with VSG and call it VSGPro. VSGPro was found to work better or similar to
DreamerPro. We also compare with DBC (Zhang et al., 2021), which uses bisimulation metrics to
learn efficient encoders that can filter noise and focus on task relevant details. Upon evaluation at
500K environment steps, VSGPro performs better on 3 tasks and comparable on 2 tasks. Furthermore,
VSGPro was found to perform similar to or better than DreamerPro. This demonstrates that the
proposed gating mechanism also helps to learn efficient representations in settings with background
noise.

21



G Atari

0 1 2 3 4 5
0

5000

10000

15000
Sc

or
e

Chopper Command

0.0 0.5 1.0 1.5 2.0 2.5
0

50000

100000

150000
Crazy Climber

0.0 0.5 1.0 1.5 2.0 2.5
0

10

20

30
Freeway

0 1 2 3 4 5
0

20000

40000

Sc
or

e

Hero

0 1 2 3 4 5

0

20

Ice Hockey

0 1 2 3 4 5
0

2000
4000
6000

Ms Pacman

0.0 0.5 1.0 1.5 2.0 2.5
20
10

0
10
20

Sc
or

e

Pong

0 1 2 3 4 5
0

2000

4000

Private Eye

0 1 2 3 4 5
0

20
40
60

Robotank

0 1 2 3 4 5
Steps 1e7

0
5000

10000
15000
20000

Sc
or

e

Seaquest

0 1 2 3 4 5
Steps 1e7

0
5000

10000
15000

Space Invaders

0 1 2 3 4 5
Steps 1e7

0
50

100
150

Venture

VSG DreamerV2 DQN Rainbow

Figure 10: Results on a few tasks from the Atari benchmark trained for upto 50M environment steps.

In this work, we also present results on 12 tasks from the Atari benchmark (Bellemare et al., 2013).
We trained the models for upto 50M environment steps which took around 2 days on a single NVIDIA
A100 GPU for each seed. We also present results of Rainbow and DQN which were trained for 200M
environment steps. For this experiment, we used the hyperparameters mentioned in the DreamerV2
paper, and use the same parameters for the gating mechanism as mentioned in Table 2. It can be
observed that on most tasks, the proposed method VSG performs similar to DreamerV2. However,
we observe performance gains on Chopper Command and Robotank, and we believe that this was
because in those games the viewpoint of the agent changes with movement. For example, in Robotank
environment, the agent can rotate around to search for enemy tanks to shoot. VSG was performing
worse than the baseline on stochastic environments- Seaquest and Ms Pacman. Also, DreamerV2
was not performing well on the Private Eye environment. However, VSG was able to learn to solve
the task for a few seeds as the environment is partially-observable and agent has to enter and exit
different parts of the game. We ran with 3 more seeds and a similar trend was observed where some
of the seeds were failing, whereas on a few of them the model learned to solve the task.

22



H Comparison with Stochastic State-Space Models (SSM)

0 1 2 3 4 5
0

200

400

600

800

1000
Sc

or
e

Cartpole Swingup

0 1 2 3 4 5
0

200

400

600

800

1000
Cheetah Run

0 1 2 3 4 5
0

200

400

600

800

1000
Finger Spin

0 1 2 3 4 5
Steps 1e5

0

200

400

600

800

1000

Sc
or

e

Reacher Easy

0 1 2 3 4 5
Steps 1e5

0

200

400

600

800

1000
Walker Walk

SVSG SSM D4PG (1e9 steps) SLAC (3e6 steps)

Figure 11: Comparison of SVSG and SSMs on a few tasks from the DMC trained for 500K
environment steps.

Stochastic State-Space Models (SSMs) were discussed in PlaNet (Hafner et al., 2019) where the
authors showed that SSMs do not achieve comparable performance when compared with RSSMs.
We have shown that SVSG with a purely stochastic path can achieve comparable performance and
outperform RSSMs on continuous control tasks with partial-observability and stochasticity. We
also compare with SSMs as a baseline with a pure stochastic path only. In PLaNet, Cross Entropy
Method (CEM) (Rubinstein, 1997; Chua et al., 2018) was used for planning. Since Dreamer agents
improve upon PLaNet by having actor-critic network with learnable parameters in the policy and
having KL-balancing in the training objective, we also implemented SSMs with those modifications.
However, SSMs with those modifications were not found to work well as the actor was diverging.
We also tried increasing the size of the stochastic state to larger values as it is 30 in the original
implementation. We believe that sparse update prior is enabling the SVSG model to have large
state sizes. Thus, we use the original implementation of SSMs from PLaNet for comparison. We
experimented with a few tasks from the DMControl Suite and used 3 seeds for each task. As discussed
earlier, SVSG was found to significantly outperform SSMs on all the tasks.

23



I Comparison of Architectures

I.1 Recurrent State-Space Model (RSSM)

𝑊𝑣 ⊗

𝑖𝑡

ℎ𝑡−1 ℎ𝑡

𝑣𝑡

෨ℎ𝑡

𝑜𝑡

𝑧𝑡

Ƹ𝑧𝑡~

~

tanh⊕

𝑢𝑡

ℳ
𝜎

𝑓𝑝

𝑓𝑞

𝑊𝑐

𝑊𝑢 𝜎

𝑊𝑣 ⊗

𝑖𝑡

ℎ𝑡−1 ℎ𝑡

𝑣𝑡

෨ℎ𝑡

𝑜𝑡

𝑧𝑡

Ƹ𝑧𝑡~

~

tanh⊕
ℳ

𝜎
𝑓𝑝

𝑓𝑞

𝑊𝑐

𝑊𝑢 𝜎 ~ℬ
𝑢𝑡 𝑢𝑡

𝑠𝑡−1

𝑊𝑣 ⊗

𝑖𝑡

𝑣𝑡

𝑜𝑡

𝑧𝑡

Ƹ𝑧𝑡
~

~

tanh⊕

𝜎

𝑓𝑝

𝑓𝑞
𝑊𝑐

𝑊𝑢 𝜎 ~ℬ
𝑢𝑡 𝑢𝑡

ℳ

ℳ

ǁ𝑠𝑡

𝑠𝑡

Ƹ𝑠𝑡

Figure 12: Architecture of Recurrent State-Space Model (RSSM). σ and tanh denote the sigmoid
and hyperbolic tangent non-linear activation, respectively. W∗ and b∗ are the corresponding weights
and biases. ∼, ⊕ and ⊗ denote sampling, vector concatenation, and element-wise multiplication,
respectively. M computes ht = uth̃t + (1 − ut)ht−1. fp and fq denote the prior and posterior
distributions with learned parameters, respectively.

The Recurrent State-Space Model (RSSM) comprises of a recurrent path and an image representation
path. Similar to VSG, the input it to the recurrent model contains information about the action and is
obtained by concatenating the previous image representation state zt−1 and action at followed by
passing them through through a MLP layer. RSSM uses a Gated Recurrent Unit (GRU) (Cho et al.,
2014) for the recurrent state where the module has two gates- reset and update. The reset gate vt
controls the flow of information from the previous state and input, and the update gate ut controls the
extent of update of the recurrent state. Unlike VSG, the update gate in RSSM is not binary and can
have values between 0 and 1. The equations are as follows:

vt = σ(WT
v [ht−1, it] + bv)

ut = σ(WT
u [ht−1, it] + bu)

h̃t = tanh(vt ∗ (WT
c [ht−1, it] + bc))

ht = ut ⊙ h̃t + (1− ut)⊙ ht−1,

(9)

where ⊙ denotes element-wise multiplication, σ and tanh are the sigmoid and hyperbolic tangent
non-linear activation, and W∗ and b∗ denotes the weights and biases, respectively. The recurrent state
is further used to obtain the posterior zt and prior states ẑt by passing it through MLP layers with and
without observation ot, respectively.

24



I.2 Variational Sparse Gating (VSG)

We present the zoomed in architecture of Variational Sparse Gating (VSG). For details, refer to
Section 2 in the main paper.

𝑊𝑣 ⊗

𝑖𝑡

ℎ𝑡−1 ℎ𝑡

𝑣𝑡

෨ℎ𝑡

𝑜𝑡

𝑧𝑡

Ƹ𝑧𝑡~

~

tanh⊕

𝑢𝑡

ℳ
𝜎

𝑓𝑝

𝑓𝑞

𝑊𝑐

𝑊𝑢 𝜎

𝑊𝑣 ⊗

𝑖𝑡

ℎ𝑡−1 ℎ𝑡

𝑣𝑡

෨ℎ𝑡

𝑜𝑡

𝑧𝑡

Ƹ𝑧𝑡~

~

tanh⊕
ℳ

𝜎
𝑓𝑝

𝑓𝑞

𝑊𝑐

𝑊𝑢 𝜎 ~ℬ
𝑢𝑡 𝑢𝑡

𝑠𝑡−1

𝑊𝑣 ⊗

𝑖𝑡

𝑣𝑡

𝑜𝑡

𝑧𝑡

Ƹ𝑧𝑡
~

~

tanh⊕

𝜎

𝑓𝑝

𝑓𝑞
𝑊𝑐

𝑊𝑢 𝜎 ~ℬ
𝑢𝑡 𝑢𝑡

ℳ

ℳ

ǁ𝑠𝑡

𝑠𝑡

Ƹ𝑠𝑡

Figure 13: Architecture of Variational Sparse Gating (VSG). σ and tanh denote the sigmoid and
tanh non-linear activations, respectively. W∗ and b∗ are the corresponding weights and biases. ∼,
⊕ and ⊗ denote sampling, vector concatenation, and element-wise multiplication, respectively. M
computes ht = uth̃t + (1− ut)ht−1. B denotes Bernoulli distribution. fp and fq denote the prior
and posterior distributions with learned parameters, respectively.

I.3 Simple Variational Sparse Gating (SVSG)

We present the zoomed in architecture of Simple Variational Sparse Gating (SVSG). For details, refer
to Section 3 in the main paper.

𝑊𝑣 ⊗

𝑖𝑡

ℎ𝑡−1 ℎ𝑡

𝑣𝑡

෨ℎ𝑡

𝑜𝑡

𝑧𝑡

Ƹ𝑧𝑡~

~

tanh⊕

𝑢𝑡

ℳ
𝜎

𝑓𝑝

𝑓𝑞

𝑊𝑐

𝑊𝑢 𝜎

𝑊𝑣 ⊗

𝑖𝑡

ℎ𝑡−1 ℎ𝑡

𝑣𝑡

෨ℎ𝑡

𝑜𝑡

𝑧𝑡

Ƹ𝑧𝑡~

~

tanh⊕
ℳ

𝜎
𝑓𝑝

𝑓𝑞

𝑊𝑐

𝑊𝑢 𝜎 ~ℬ
𝑢𝑡 𝑢𝑡

𝑠𝑡−1

𝑊𝑣 ⊗

𝑖𝑡

𝑣𝑡

𝑜𝑡

𝑧𝑡

Ƹ𝑧𝑡
~

~

tanh⊕

𝜎

𝑓𝑝

𝑓𝑞
𝑊𝑐

𝑊𝑢 𝜎 ~ℬ
𝑢𝑡 𝑢𝑡

ℳ

ℳ

ǁ𝑠𝑡

𝑠𝑡

Ƹ𝑠𝑡

Figure 14: Architecture of Simple Variational Sparse Gating (SVSG). σ and tanh denote the sigmoid
and tanh non-linear activations, respectively. W∗ and b∗ are the corresponding weights and biases. ∼,
⊕ and ⊗ denote sampling, vector concatenation, and element-wise multiplication, respectively. M
computes st = uts̃t + (1 − ut)st−1. B denotes Bernoulli distribution. fp and fq denote the prior
and posterior distributions with learned parameters, respectively.

25



J Ablation for Sparse Gating Mechanism

To conduct this experiment, the learned world model of corresponding agents are given the first
15 frames and 5 rollouts are generated in the latent space for the next 35 frames. The sequence of
actions is kept fixed across the generated trajectories, and obtained model states are passed through
the decoder to reconstruct the frames. Upon observing the imagined rollouts, VSG and SVSG were
demonstrated to have better memory at remembering the color and location of objects. Whereas the
world model from DreamerV2 agent was found to distort the shapes and change the color of objects.
This demonstrates that the proposed mechanism helps retain information for longer time steps. Please
refer to supplementary material for more videos on the same.

Figure 15: Imagined trajectories from the DreamerV2 agent. The top row is the ground truth and the
next 5 rows are different rollouts given the same first 15 frames and action sequence. In this figure,
we can observe that the model changes the color of the object towards the end of the episode.

Figure 16: Imagined trajectories from the VSG agent. The top row is the ground truth and the next 5
rows are different rollouts given the same first 15 frames and action sequence. Here, we observe that
the agent is able to retain the color and shape of red block, and also reaches the final position which
is close to the goal on 4 trajectories.

26



Figure 17: Imagined trajectories from the SVSG agent. The top row is the ground truth and the next
5 rows are different roll outs given the same first 15 frames and action sequence. We can see that
SVSG is also able to retain the shape and color of objects.

27


	Introduction
	Variational Sparse Gating
	World Model

	Simple Variational Sparse Gating
	Experiments
	BringBackShapes
	DeepMind Control Suite

	Related Work
	Discussion
	BringBackShapes
	Behavior Learning
	Hyper Parameters
	Scores on Deepmind Control Suite
	Ablations Studies
	Sparsity Loss in alg
	Sparsity Loss and KL Mask in algsimple

	DMC with Natural Background
	Atari
	Comparison with Stochastic State-Space Models (SSM)
	Comparison of Architectures
	rssm
	alg
	algsimple

	Ablation for Sparse Gating Mechanism

