
Multi-Turn Code Generation Through Single-Step Rewards

Arnav Kumar Jain * 1 2 Gonzalo Gonzalez-Pumariega * 3 Wayne Chen 3 Alexander M Rush 3

Wenting Zhao † 3 Sanjiban Choudhury † 3

Abstract
We address the problem of code generation from
multi-turn execution feedback. Existing meth-
ods either generate code without feedback or use
complex, hierarchical reinforcement learning to
optimize multi-turn rewards. We propose a sim-
ple yet scalable approach, µCODE, that solves
multi-turn code generation using only single-step
rewards. Our key insight is that code generation
is a one-step recoverable MDP, where the correct
code can be recovered from any intermediate code
state in a single turn. µCODE iteratively trains
both a generator to provide code solutions con-
ditioned on multi-turn execution feedback and a
verifier to score the newly generated code. Ex-
perimental evaluations show that our approach
achieves significant improvements over the state-
of-the-art baselines. We provide analysis of the
design choices of the reward models and policy,
and show the efficacy of µCODE at utilizing the
execution feedback. Our code is available here.

1. Introduction
Software engineers often iteratively refine their code based
on execution errors. A common strategy for machine code
generation is thus to repair code using execution feedback
at test time (Chen et al., 2024; Wang et al., 2024b; Zhao
et al., 2024). However, prompting alone is insufficient as it
cannot teach how to recover from all possible errors within
a limited context.

We need to train models that can learn from execution feed-
back during training. Existing approaches fall into either
single-turn or multi-turn settings. In the single-turn setting,
methods either train without execution feedback (Zelikman
et al., 2022) or perform one-step corrections (Welleck et al.,
2023; Ni et al., 2024). However, these struggle to iteratively

*Equal contribution†Equal advising 1Mila- Quebec AI Insti-
tute 2Université de Montréal 3Cornell University. Correspon-
dence to: Arnav <arnav-kumar.jain@mila.quebec>, Gonzalo
<gg387@cornell.edu>.

Preprint.

correct errors over multiple turns. Multi-turn approaches,
on the other hand, rely on complex reinforcement learning
(RL) (Gehring et al., 2024a; Kumar et al., 2024b; Zhou et al.,
2024) to optimize long-term rewards. While effective in
principle, these methods suffer from sparse learning signals
which makes learning inefficient.

Our key insight is that code generation is a one-step recov-
erable Markov Decision Process (MDP), implying that the
correct code can be recovered from any intermediate state
in a single step. This allows us to greedily maximize a one-
step reward instead of relying on complex multi-step reward
optimization. As a result, this reduces the problem from re-
inforcement learning, which requires exploration and credit
assignment, to imitation learning, where the model simply
learns to mimic correct code, leading to a more stable and
efficient training process.

We propose µCODE, a simple and scalable approach for
multi-turn code generation from execution feedback. Dur-
ing training, µCODE follows an expert iteration (Anthony
et al., 2017) framework with a local search expert, enabling
iterative improvement of both the generator and the expert.
The process begins by rolling out the current code genera-
tor to collect interaction data with execution feedback. A
single-step verifier is then trained on this data and utilized
to guide a local search expert in refining the code and gen-
erating training labels. Finally, the generator is fine-tuned
using these labels. Given recent trends of test-time scaling
in generating high quality solutions (Brown et al., 2024;
Snell et al., 2024; Wu et al., 2024), µCODE also uses the
learned verifier for inference-time scaling. Here, µCODE
samples N trajectories; at each step, µCODE picks the best
code solution ranked by the learned verifier.

The key contributions of this work are as follows:

1. A novel framework, µCODE, for training code genera-
tors and verifiers through multi-turn execution feedback.
We add theoretical analysis of performance bounds using
the property of one-step recoverability for this task.

2. We propose a multi-turn Best-of-N (BoN) approach for
inference-time scaling and present benefits of a learned
verifier to select the code solution at each turn.

3. Our approach µCODE outperforms leading multi-turn
approaches on MBPP (Austin et al., 2021) and Hu-

1

ar
X

iv
:2

50
2.

20
38

0v
1

 [
cs

.L
G

]
 2

7
Fe

b
20

25

https://github.com/portal-cornell/muCode

Multi-Turn Code Generation Through Single-Step Rewards

Prompt (x)
“Check if the

given string is a
palindrome”

def is_palindrome(s):
 return s[0] == s[-1]

Turn 1

❌ is_palindrome(“abca”)==False
❌ is_palindrome(“test”)==False

Turn 2

def is_palindrome(s):
 return s[0] == s[::-1]

✅ is_palindrome(“a”)==True
❌ is_palindrome(“bob”)==True

Turn 3

def is_palindrome(s):
 return s == s[::-1]

✅ is_palindrome(“a”)==True
✅ is_palindrome(“bob”)==True

def is_palindrome(s):
 return s == s[::-1]

(y1)

(o1)
(y2)

(o2)
(y3)

(o3)

y⋆2 y⋆3 y⋆4

Train Verifier
Rϕ(x , y)

Expert

Local search
with

π⋆

Rϕ

Relabel with 𝒟 π⋆

y⋆2

Train Generator
πθ(y |s)

s1
s2 s3

y1
y2

s1
s2 s3

y⋆3

Rollout generator
Aggregate data

πθ
𝒟

Code generation is a
“one-step recoverable” MDP

(a)

(b)

s1

s2 s3 s4

y⋆1

y⋆1

Figure 1. (a) We define the task of multi-turn code generation where for an initial problem x, the generator πθ provides a solution y1.
This solution is evaluated with the public test to get execution feedback o1. At a turn t, the generator is conditioned on the history to
generate solution yt ∼ πθ(.|x, y<t, o<t). The rollout ends when the turn limit is reached or the public tests pass upon which the solution
is executed on private tests. Since, the agents can generate the optimal solution at any turn, this is a 1-step recoverable process. (b)
Training loop of our method µCODE – which comprises of a generator and a learned verifier. During each iteration, rollouts are collected
using πθ and we train a verifier Rϕ to rank candidate solutions for a prompt. The verifier Rϕ is then used to construct a local expert and
relabel the collected rollouts. Lastly, the generator is fine-tuned with this expert dataset.

manEval (Chen et al., 2021) benchmarks. Our ablations
demonstrate that learned verifiers aid in learning better
generators and show promising scaling law trends with
higher inference budgets.

2. Background
Multi-turn Code Generation as a MDP. In multi-turn
code generation, an agent iteratively refines a program to
maximize its correctness on private test cases. Given an
initial problem prompt x, at each turn t, the agent generates
a complete code snippet yt and executes it on a set of public
tests. The outcomes ot from these tests serve as observations
that guide subsequent refinements. This process continues
until the agent generates a code snippet yt that passes all
public tests, at which point the episode terminates, or until
the maximum number of turns T is reached without success.
The first successful code, yt, is then evaluated on private
tests to compute the correctness score C(x, yt) ∈ {0, 1}.

We model this as a Markov Decision Process (MDP),
where the state is the interaction history st =

{x, y1, o1, . . . , yt−1, ot−1} where s1 = {x}, and the ac-
tion is the code at = yt. The oracle reward is defined as
R(st, at) = R(x, at) = C(x, yt) if yt passes all public and
private tests (terminating the episode), or 0 otherwise.

During training, given a dataset of problem prompts D, the
goal is to find a generator πθ(yt|x, y1, o1, . . . , yt−1, ot−1),
that maximizes the cumulative discounted reward R(x, yt):

max
πθ

Ex∼D,yt∼πθ(·|st)

[
T∑

t=1

γtR(x, yt)

]
. (1)

3. µCODE: Multi-turn Code Generation
We propose µCODE, a simple and scalable algorithm
for multi-turn code generation using execution feedback.
µCODE follows an expert iteration (Anthony et al., 2017)
framework with a local search expert. µCODE iteratively
trains two components – a learned verifier Rϕ to score code
snippets (Section 3.2), and a generator πθ to imitate local
search with the verifier (Section 3.3). This iterative process
allows the generator and expert to bootstrap off each other,

2

Multi-Turn Code Generation Through Single-Step Rewards

Algorithm 1 µCODE: Training
input Initial generator π0, multi-turn code environment E ,

and max iterations M
1: for iteration i = 1 . . . M do
2: Rollout generator πθ in multi-turn environment E

to collect datapoints Di ← {(x, st, yt, ot))}
3: Aggregate data D ← D ∪Di

4: Train a verifier Ri
ϕ(x, y) on D

5: Construct a local search expert using verifier
πi
⋆(x) = argmaxy∈D(x) R

i
ϕ(x, y)

6: Relabel data D with πi
⋆(x) to get Di

⋆

7: Train πi
θ with fine-tuning (FT) on Di

⋆

8: end for
output Best generator πθ and verifier Rϕ

leading to continuous improvement. At inference time, both
the generator and verifier are used as BoN search to select
and execute code (Section 3.4). Finally, we analyze the
performance of µCODE in Section 3.5.

3.1. The µCODE Algorithm

Algorithm 1 presents the iterative training procedure. At
an iteration i, the current generator πθ is rolled out in the
multi-turn code environment E to generate interaction data
Di ← {(x, st, yt, rt)}. Every turn t in Di includes the
prompt x, interaction history st, code generated yt and the
correctness score from the oracle verifier rt = R(x, yt).
This data is then aggregated D ← D ∪ Di. The learned
verifier Ri

ϕ is trained on the aggregated dataD. An expert is
created using Ri

ϕ to perform local search to find the optimal
action πi

⋆(x) = argmaxy∈D(x) R
i
ϕ(x, y), where D(x) are

all the code completions for a given prompt x. The expert
πi
⋆(x) relabels the data D with the optimal action. The

generator πi
θ is then trained via fine-tuning (FT) on D. This

process iterates M times, and the best generator and verifier
pair on the validation dataset are returned.

3.2. Training Verifier

The learned verifier provides dense scores to code solutions
for a given problem. At train time, this is used by the
expert to perform local search to obtain optimal code. At
inference time, the verifier is used for multi-turn BoN (3.4)
for efficient search. The learned verifier has two distinct
advantages over process reward functions typically used
in multi-turn RL: (1) It is conditioned only on the initial
prompt and the current solution, and is not dependent on
previous states (2) It is trained via supervised learning on
oracle reward labels. We explore two different losses:

Binary Cross-Entropy loss (BCE): The nominal way to
train the verifier is to directly predict the oracle reward

(Cobbe et al., 2021):

LBCE(ϕ) = −E(x,y,r)∼D[r logRϕ(x, y)

−(1− r) logRϕ(x, y)]
(2)

Bradley Terry Model (BT): Since the goal of the verifier is
to relatively rank code solutions rather than predict absolute
reward, we create a preference dataset and then train with a
Bradley Terry loss (Ouyang et al., 2022). For every prompt
x, we create pairs of correct y+ (where r = 1) and incorrect
y− (where r = 0) code and define the following loss:

LBT (ϕ) = −E(x,y+,y−)∼D[log σ(Rϕ(x, y
+)−Rϕ(x, y

−))].
(3)

where σ(.) is the sigmoid function. We hypothesize that BT
is strictly easier to optimize as the verifier has to only focus
on relative performance. This is also consistent with obser-
vations made for training process reward models, where the
advantage function is easier to optimize than the absolute Q
function (Setlur et al., 2024).

3.3. Training Generator

µCODE comprises a generator πθ trained to produce code so-
lutions conditioned on the initial problem and execution ob-
servations from previous turns. Given a dataset D, µCODE
iteratively trains the generator to find the optimal code solu-
tion labeled using the local expert over the learned verifier.
For this step, µCODE extracts all code solutions from D for
every problem x. An expert is then created by picking the
best solution, y⋆, which achieves the highest score using
with the learned verifier Rϕ(x, y) and is given by

y⋆ = π⋆(x) = arg max
y∈D(x)

Rϕ(x, y). (4)

Using this expert dataset, we relabel the dataset D with the
optimal solutions for each prompt:

D⋆ = {(x, st, y⋆) | (x, st) ∼ D}, (5)

where D⋆ represents the expert dataset. The generator πθ is
then trained via fine-tuning (FT) on this expert dataset D⋆.

3.4. Inference: Multi-turn Best-of-N

At inference time, the goal is to generate a code solution
with a fixed inference budget – denoting the number of
times generators can provide one complete solution. In
this work, we propose to leverage the learned verifier to
improve search and code generations over successive turns
with multi-turn Best-of-N (BoN). To achieve this, µCODE
uses a natural extension of BoN to the multi-turn setting.
At each turn, the generator produces N one-step rollouts
{ynt }Nn=1 ∼ πθ(.|st) and the learned verifier picks the most
promising code solution among these candidates using

y∗t = argmax
n

Rϕ(x, y
n
t). (6)

3

Multi-Turn Code Generation Through Single-Step Rewards

Algorithm 2 µCODE: Inference loop
input Generator πθ, learned verifier Rϕ, turn limit T, num-

ber of rollouts N, public tests, and private tests
1: Set s1 = {x}, t = 1
2: while true do
3: Generate N rollouts {ynt }Nn=1 ∼ πθ(.|st)
4: Choose best solution y∗t = argmaxn Rϕ(x, y

n
t)

5: Execute y∗t to get execution feedback ot
6: if y∗t passes public tests or t = T then
7: break;
8: end if
9: Update state st+1 = {st, y∗t , ot} and increment t

10: end while
output Return y∗ to execute on public and private tests

The selected code y∗t is executed in the environment over
public tests to obtain the execution feedback ot. This solu-
tion and the feedback is provided as context to the generator
at the next turn to repeat this procedure. The search ends
once y∗t passes all public tests or when the turn limit is
reached. Consequently, even if Rϕ(·) grants a high score to
a code solution, inference continues until the solution has
successfully cleared all public tests, thus mitigating poten-
tial errors by Rϕ(·). The final response y∗t is then passed
through the oracle verifier to check its correctness. Algo-
rithm 2 describes a description of multi-turn BoN. We found
it beneficial to use the reward model trained with samples
of the latest generator πθ (see Table 1).

3.5. Analysis

µCODE effectively treats multi-turn code generation as an
interactive imitation learning problem by collecting roll-
outs from a learned policy and re-labeling them with an
expert. It circumvents the exploration burden of generic
reinforcement learning which has exponentially higher sam-
ple complexity (Sun et al., 2017). We briefly analyze why
this problem is amenable to imitation learning and prove
performance bounds for µCODE.

Definition 3.1 (One-Step Recoverable MDP). A MDP
M = (S,A, P,R, γ) with horizon T is one-step recover-
able if the advantage function of the optimal policy π∗, de-
fined as A∗(s, a) = Q∗(s, a)−V ∗(s), is uniformly bounded
for all (s, a), i.e. A∗(s, a) ≤ 1.

Code generation is one-step recoverable MDP. Multi-
turn code generation satisfies one-step recoverability be-
cause the optimal policy π∗(yt|st) depends only on the
problem prompt x and not the interaction history st =
(x, y1, o1, . . . , yt−1, ot−1). Since the correctness of a code
snippet yt is fully determined by x, the optimal Q-function
satisfies Q∗(st, yt) = R(x, yt), where R(x, yt) ∈ {0, 1}.
The optimal value function is V ∗(st) = maxyt R(x, yt),

so the advantage function simplifies to A∗(st, yt) =
R(x, yt)−maxy′

t
R(x, y′t) ≤ 1.

Code generation enables efficient imitation learning.
There are two challenges to applying interactive imitation
learning (Ross et al., 2011; Ross & Bagnell, 2014) – (1)
Existence of expert policies or value functions, and (2)
Recoverability of expert from arbitrary states. First, for
code generation, the expert is simply the one-step reward
maximizer argmaxy R(x, y). We can efficiently estimate
Rϕ(x, y) to compute the expert, without needing to com-
pute value function backups. Second, even if the learner
fails to imitate the expert at any given state, the expert can
perfectly recover from the next state. This results in the best
possible performance bounds for imitation learning, which
we formalize below.

Theorem 3.2 (Performance bound for µCODE). For a one-
step recoverable MDPM with horizon T , running N itera-
tions of µCODE yields at least one policy π such that

J(π∗)− J(π) ≤ O(T (ϵ+ γ(N))). (7)

where π∗ is the expert policy, ϵ is the realizability error, and
γ(N) is the average regret.

Proof is in Appendix A.1. The bound O(ϵT) is much better
than the worst-case scenario of O(ϵT 2) for unrecoverable
MDPs (Swamy et al., 2021). Thus, µCODE exploits the
structure of multi-turn code generation to enable imitation
learning, bypassing the need for hierarchical credit assign-
ment. More generally, this analysis suggests that for any
task where the optimal action is history-independent and re-
coverable in one step, reinforcement learning can be reduced
to efficient imitation learning without loss of performance.

4. Experiments
Through our experiments, we aim to analyze (1) How does
µCODE compare to other state-of-the-art methods? (2) Does
the learned verifier help during training and inference-time?
(3) Which loss function works better for learning a verifier?

4.1. Setup

Models. The generator model in µCODE is initialized with
Llama-3.2-1B-Instruct or Llama-3.1-8B-Instruct (Dubey
et al., 2024). The learned verifiers are initialized with the
same models as generators and have a randomly initialized
linear layer to predict a scalar score (Stiennon et al., 2020).

Datasets. We conduct experiments on MBPP (Austin
et al., 2021) and HumanEval (Chen et al., 2021) where
the agent needs to generate code solutions in Python given
natural language descriptions. We train the methods on
the MBPP training set which comprises 374 problems and

4

Multi-Turn Code Generation Through Single-Step Rewards

evaluate on the MBPP test set and HumanEval (HE) dataset
which have 500 and 164 problems. We further describe
the prompts and the split of public and private tests in Ap-
pendix A.3 and A.4.

Baselines. We compare µCODE with single and multi-turn
baselines. For the single and multi-turn settings, we report
metrics by generating solutions from Llama models which
we denote as Instruct. We also compare with STaR (Zelik-
man et al., 2022) where the correct solutions of the Instruct
model are used for fine-tuning (FT). We also compare to a
multi-turn version of STaR, called Multi-STaR. Here, we
collect multi-turn rollouts using the Instruct model and use
trajectories terminating in a correct code solution for FT. For
multi-turn BoN search, we collect the solutions that pass
public tests, and then we select the best one judged by a
learned verifier. Note that this verifier is specifically trained
for each generator.

Metrics. We measure the performance with the BoN ac-
curacy, which quantifies the accuracy of the solution chosen
by a verifier from N candidate solutions. The generator is
allowed T = 3 turns and the final turn is used for evaluation
over private tests. At each turn, the verifier ranks N = 5 so-
lutions (unless stated otherwise) provided by the generator.
For the BoN performance, we sample with a temperature
of 0.7. We also report the accuracy of generating correct
solutions via greedy decoding.

4.2. Results

In Table 1, we compare the proposed algorithm µCODE
with the baselines. Here, we first evaluate the generators
using code generated via greedy sampling for each prob-
lem (N = 1). This measures the accuracy of generating a
correct solution with a turn limit of T = 3. We observe that
multi-turn methods (both Instruct and Multi-STaR) perform
better than their single-turn variants showing the importance
of incorporating execution feedback. Our approach µCODE
outperforms Multi-STaR across both benchmarks with 1B-
sized model demonstrating the efficacy of training genera-
tors with data obtained with a learned verifier. To highlight,
our method µCODE with a 1B parameter model achieves
1.9% performance gains compared to Multi-STaR on the
HumanEval dataset. With an 8B-sized model, µCODE out-
performs baselines on MBPP whereas there is a drop when
compared on HumanEval.

We further evaluate the effect of having a verifier for BoN
search during inference, where a learned verifier selects
the most promising candidate solution at each turn. In Ta-
ble 1, we observe that all algorithms can benefit with BoN
search. Remarkably, µCODE attains a performance gain of
up to 12.8% with the multi-turn BoN approach compared to
greedy. Moreover, µCODE outperforms leading baselines

Approach Llama-3.2-1B Llama-3.1-8B
N MBPP HE MBPP HE

Single-Turn

Instruct 1 36.5 28.0 52.1 59.8
STaR 1 35.7 34.1 53.7 54.9

Multi-Turn

Instruct 1 38.9 29.3 58.9 60.4
+BoN 5 48.5 34.3 68.1 61.2

Multi-STaR 1 36.7 33.5 57.7 59.8
+BoN 5 47.9 39.6 68.6 63.2

µCODE 1 37.9 35.4 62.3 57.9
+BoN 5 50.7 41.7 68.8 62.2

Table 1. Comparison of our method µCODE with baselines across
MBPP and HumanEval datasets. N = 1 denotes generating
solutions with 0 temperature. The Best-of-N (BoN) accuracy is
computed with N = 5 candidate solutions at each where the public
tests and learned verifier is used for selection. We observe that
µCODE outperforms competing methods based on Llama-3.2-1B-
Instruct and Llama-3.1-8B-Instruct models. The best performance
for each dataset and model-sized is highlighted in bold and similar
performances (within 1%) are underlined.

with BoN search on MBPP and HumanEval datasets by
2.8% and 2.1% with 1B sized-model and performs compa-
rably on 8B-sized model.

4.3. Analysis

To understand the improvements, we conduct a component-
wise ablation study where we 1) check the effect of ora-
cle and learned verifiers for relabeling to train the gener-
ator (4.3.1), 2) evaluate different generators trained with
and without learned verifiers (4.3.2), 3) check which verifier
performs better multi-turn BoN search at test-time (4.3.3),
4) assess scaling behaviors at inference time with number of
candidate generations (N) at each turn (4.3.4), and 5) study
the benefits of learned verifiers during evaluation (4.3.5).

4.3.1. VERIFIER FOR RELABELING

We compare different verifiers for relabeling data for train-
ing the generator. In contrast to µCODE where the learned
verifier is used to relabel (LV), we compare with relabeling
using a correct solution (attains an oracle reward R = 1)
for the corresponding prompt (OV). We also compare with
a variant where the generator is fine-tuned over combina-
tions of data relabeled with both the oracle verifier and
the learned verifier (OV+LV). Here, we concatenate the FT
dataset obtained using both LV and OV. In Figure 2, we
present results with the 1B-sized models across benchmarks
and observe that having corrections with the oracle verifier
outcome does not perform well. However, relabeling with

5

Multi-Turn Code Generation Through Single-Step Rewards

both verifiers OV+LV outperforms the OV variant, further
demonstrating that gains in the generator learned by µCODE
are coming from relabeling with a learned verifier. Lastly,
the LV variant performed best on MBPP and comparably
on HumanEval dataset when compared with LV+OV.

Figure 2. Comparison of relabeling with learned verifier (LV) and
oracle verifier (OV) with the 1B model. The variant OV+LV ag-
gregates a dataset from both verifiers for fine-tuning the generator.
Note that OV+LV performs better than OV. However, relabeling
with LV outperforms on MBPP and performs comparably on Hu-
manEval, thereby demonstrating the benefits of leveraging the
learned verifier for training the generator.

Figure 3. Comparison of µCODE and baselines with 1B models
on the ability of the learned generator to incorporate execution
feedback at each turn. We observe that µCODE consistently im-
proves the BoN accuracy across turns on both datasets, whereas
the baselines show marginal improvements with turns.

4.3.2. VARYING THE GENERATOR

In this section, we compare the multi-turn agents where the
generator is trained with an oracle verifier (Multi-STaR) or
a learned verifier (µCODE). We evaluate the ability of the
trained generator to utilize execution feedback and improve
the code response across turns. We report the BoN accuracy
till a turn t, which denotes the BoN accuracy of obtaining
a correct solution till turn t. In Figure 3, we present the re-
sults with 1B-sized models. We observe that BoN accuracy
improves with turns for µCODE whereas the baseline agents
show marginal improvements with successive turns. We be-
lieve that using a learned verifier for relabeling improves the
generator’s ability to generate solutions with high reward
values, and indeed recover better at every turn by utilizing
the execution feedback.

Approach Llama-3.2-1B Llama-3.1-8B
MBPP HE MBPP HE

Base
Random 34.4 23.0 59.3 57.9
LV 40.3 27.0 61.1 61.2
PT 48.6 31.9 67.2 60.4
PT+LV 48.5 34.3 68.1 61.2

Multi-STaR
Random 35.6 30.5 59.2 57.7
LV 39.8 31.9 61.2 62.8
PT 46.7 37.6 67.6 60.0
PT+LV 47.9 39.6 68.6 63.2

µCODE
Random 37.9 31.5 60.5 59.1
LV 45.1 35.4 64.3 60.4
PT 49.8 39.0 68.7 59.1
PT+LV 50.7 41.7 68.8 62.2

Table 2. Comparing BoN with different ways of picking solutions
at each turn for multi-turn BoN search using the 1B sized model.
The hierarchical approach of using public test and learned veri-
fier (PT+LV) outperforms only using either public tests (PT) or
the learned verifier (LV). The best performance for each dataset
and model-size is highlighted in bold and similar performances
(within 1%) are underlined.

4.3.3. VERIFIER AT TEST-TIME

In our experiments with multi-turn BoN (Table 2), we pick
the best solution based on the outcome of public tests and
the scores of the learned verifier. In this experiment, we
study different verifiers for ranking the candidate solutions
at each turn. We test with Random strategy where the policy
randomly picks from the N solutions at each step. We com-
pare to the public tests (PT) outcome that picks any solution
that passes the public test. Note that this involves evaluat-
ing all generated solutions at every turn with public tests.
We also compare to selecting a solution based on scores
obtained via the learned verifier only (LV). This is crucial
as in certain applications such privileged information like
public tests are not available and the agents can benefit from
learned verifiers during inference. Lastly, we compare with
the combination of public tests and leveraging the scores of
the learned verifier to break ties at each turn (PT+LV).

In Table 2, we compare Base, Multi-STaR and µCODE with
different verifiers at test-time. We observe that LV outper-
forms Random strategy which shows that a learned verifier
indeed aids in selecting better solutions among generations.
Given the benefits of learned verifiers for multi-turn BoN
search, they can be a good alternative when public tests are
not available. Furthermore, using the outcome of public
tests (PT) performed better than using learned verifiers (LV)

6

Multi-Turn Code Generation Through Single-Step Rewards

except on the HumanEval datset for 8B-sized model. We be-
lieve that this gap can be further reduced by learning more
powerful verifiers and leave it for future research. Inter-
estingly, the hierarchical approach (PT+LV) that uses the
learned verifier to break ties on the outcomes of public tests
performed best across methods and datasets. We hypothe-
size that using learned verifiers is beneficial in two scenarios.
Firstly, if multiple solutions pass the public tests, then the
learned verifier can filter out incorrect solutions which may
not pass private tests. Secondly, if all candidate solutions are
incorrect, then the learned verifier should choose the most
promising solution at each turn. This is crucial as picking
a better solution with the learned verifier can lead to more
relevant feedback for recovering the true solution.

4.3.4. TEST-TIME SCALING

Figure 4. Test-time scaling with different values of candidate so-
lutions N at each turn and different ways of learning verifiers. We
compare with verifiers learned on samples from µCODE and base
policy. The candidate solutions are obtained from the 1B generator
of µCODE at each turn. We observe that the BoN performance
improves with larger values of N on both datasets. The verifier
learned with on-policy samples perform better.

In the multi-turn setting, the number of candidate solutions
can rise exponentially with the number of turns. To avoid
this, µCODE uses the learned verifier during inference to
select the most promising candidate among N candidates at
each turn, leading to a linearly increasing number of calls
to the generator. We study the inference-time scaling be-
haviors of µCODE where we scale the number of candidate
generations N at each turn. Figure 4 plots the BoN with
different values of N (1 ≤ N ≤ 11). The performance
gains diminishes for larger N on both datasets. On the
MBPP dataset, the performance gains diminish with N ≥ 5,
whereas on HumanEval dataset a dip is observed for N > 7.

In this section, we further study the importance of training
the verifier with on-policy rollouts from the generator. We
present a comparison of a verifier trained with samples from
the Llama-3.2-1B-Instruct model (Base Verifier) and a ver-
ifier learned with samples from the generator of µCODE.
Note that we use the generator of µCODE to obtain candi-
date solutions at each turn during evaluation. In Figure 4, we

also present the scaling behaviors of different learned veri-
fiers. We observe that using a verifier trained with on-policy
samples obtained via the generator of µCODE performs bet-
ter and showed significant improvements of up to 4.3% for
different values of candidate solutions N .

Figure 6 presents a qualitative example of multi-turn Best-
of-N search with µCODE. Through this example, we demon-
strate the advantages of dense scores from the learned veri-
fier at facilitating efficient search across turns. We generate
N = 5 code solutions at each turn and show the top 3
ranked solutions using the dense scores. At the first turn,
we observe that the last solution y31 is less accurate than
the other 2 solutions y11 and y21 . The top ranked solution is
used to collect the environment feedback, upon which the
generator comes up with N new candidate solutions. Upon
the top 3 solutions, the last two snippets are similar to the
candidates from the previous turn. However, the top ranked
solution is a novel solution and is more accurate as the gen-
erated code learns to extract a single digit and multiply it.
With the execution feedback, µCODE generates 2 correct
responses– y13 and y23 and learned verifier chooses one of
them compared to the incorrect response y33 .

Figure 5. Comparison between BCE and BT loss function for train-
ing the verifier. We train the verifiers on samples generated by
the base model (Llama-3.2-1B-Instruct). The learned verifier then
ranks the candidate solutions from base model and the BoN per-
formance of selected solution is reported. The verifier trained with
BT loss performs better increasing value of N.

4.3.5. LOSS FUNCTION FOR VERIFIER

As described in 3.2, we compare against different loss func-
tions for training the verifier. For this experiment, we first
generate multiple single step rollouts and label them via
oracle verifier. Given oracle labels, we train verifiers with
two loss functions – BCE and BT. During inference, the
learned verifier picks the best ranked solution among the N
solutions provided by the generator. Similar to (Cobbe et al.,
2021), we report the BoN plot with different values of N
obtained by first sampling N candidate solutions, choosing
the top-ranked solution using the learned verifier, and then
evaluating the solution against public and private tests. We
calculate this metric over multiple samples for each value of

7

Multi-Turn Code Generation Through Single-Step Rewards

Figure 6. A qualitative example of multi-turn BoN search using dense rewards obtained via the learned verifier in µCODE. Here, we show
the top 3 ranked solutions at each turn t where Rϕ(x, y

i
t) ≥ Rϕ(x, y

j
t) for i < j. We observe that the learned verifier selects the better

solution (in orange) at each turn. The selected solution is passed to public tests to retrieve execution feedback for the generator to improve
the next code solution. The selected solution at each turn is better than the last (less errors highlighted in yellow), with the final solution
passing all tests. Note that there are 2 correct solutions at the final turn.

N . In Figure 5, we observe that the verifier trained with BT
loss consistently outperforms the verifier trained on BCE
loss on both MBPP and HumanEval.

5. Related Work
Prompting To Solve Multi Step Tasks A common frame-
work for tackling multi-step tasks with LLMs is prompting-
based agentic systems. Self-Debugging (Chen et al., 2023b)
asks the LLM to iteratively improve code by providing exe-
cution feedback while CodeT (Chen et al., 2022) asks the
LLM to generate test cases. AlphaCodium (Ridnik et al.,
2024) first reflects on input instructions, generates and fil-
ters from multiple code generations, and finally iterates on
public and self-generated test cases. MapCoder (Islam et al.,
2024) incorporates four agents to generate example prob-
lems, plans and code, and then perform debugging. How-
ever, prompting-based agents yield limited improvements.

Training LLMs for Multi Step Tasks Some work has
explored explicitly training critics or reward models for
multi-step reasoning tasks. In the coding domain, CodeRL
(Le et al., 2022) trains a token-level critic to aid in code
generation and to perform inference-time search. CodeRL’s
mechanics are similar to our method, but their generator is
not trained for multi-step: CodeRL trains a “code repairer”
which conditions on one erroneous code completion while
our generator incorporates multiple. ARCHER (Zhou et al.,
2024), which frames multi-step tasks via a two-level hierar-
chical MDP, where the higher level MDP considers comple-
tions as actions and the lower level MDP considers tokens
as actions. Another line of work utilizes Monte Carlo Tree
Search (MCTS) methods for training: rStar-Math (Guan
et al., 2025) trains a policy preference model to boost small

LMs’ math abilities to match or exceed large reasoning-
based LMs and ReST-MCTS (Zhang et al., 2024) trains a
process reward model (PRM) similarly to Math-Shepherd
(Wang et al., 2024a). Although µCODE’s BoN search re-
sembles a tree search, our key insight that multi-step code
generation resembles a one-step recoverable MDP allows
us to collect training trajectories much more efficiently. Fi-
nally, some work has explored using verifiers only during
inference time. In “Let’s Verify Step by Step” (Lightman
et al., 2023), the authors demonstrate that PRMs trained on
erroneous math solutions annotated by humans outperform
outcome reward models for filtering multiple inference time
generations. Meanwhile, AlphaCode (Li et al., 2022) trains
a test generator to evaluate multiple code solutions.

Other works omit learning a critic or reward model alto-
gether. In the coding domain, RLEF (Gehring et al., 2024b)
derives rewards only on the executor’s result on test cases
and syntax checkers, and PPOCoder (Shojaee et al., 2023)
additionally considers semantic and syntactic alignment,
generated via data flow graphs and abstract syntax trees re-
spectively, with a reference solution. The “oracle” rewards
in these methods may not be informative for training, and
in the case of PPOCoder, require complex constructs. We
empirically show that having a reward model is beneficial by
comparing µCODE against the Multi-STaR baseline. Mean-
while, SCoRe (Kumar et al., 2024a) splits training into a
“generator” and “correction” phase, thus restricting the to-
tal number of turns to 2. RISE (Qu et al., 2024) generates
recovery steps via a more powerful LLM or by selecting a
sampled completion via the oracle rewards. Both methods
are less efficient than µCODE, which doesn’t require gen-
erating corrections beyond generating training trajectories.
Finally, FireAct (Chen et al., 2023a) and LEAP (Choud-
hury & Sodhi, 2024) FT ReAct style agents while RL4VLM

8

Multi-Turn Code Generation Through Single-Step Rewards

(Zhai et al., 2024) and GLAM (Carta et al., 2024) studies
training LLMs with interactive environment feedback.

6. Conclusion
We present µCODE, a simple and scalable method for multi-
turn code generation through single-step rewards. µCODE
models code generation as a one-step recoverable MDP and
learns to iteratively improve code with a learned verifier
to guide the search. Experimental results demonstrate that
µCODE outperforms methods using oracle verifiers by a
large margin. We acknowledge the following limitations
of this paper. Due to a limited budget, we were only able
to train models with up to eight-billion parameters. It is
possible that the conclusions made in this paper do not
generalize to models of larger scales. Additionally, we train
models on MBPP, whose training set has only 374 examples.
However, we hypothesize that more training examples will
lead to better performance. Finally, our datasets are only
in Python, and our findings might not generalize to other
programming languages.

Impact Statement
The proposed method for training code agents has the po-
tential to streamline software development processes by
automating routine coding tasks, thereby reducing human
labor and accelerating production timelines. However, these
advances will also introduce bugs, which can propagate at
scale if no proper quality control is in place.

Acknowledgements
AJ is supported by Fonds de Recherche du Québec (FRQ),
Calcul Québec, Canada CIFAR AI Chair program, and
Canada Excellence Research Chairs (CERC) program. The
authors are also grateful to Mila (mila.quebec) IDT and Dig-
ital Research Alliance of Canada for computing resources.
AMR is supported in part by NSF CAREER #2037519 and
NSF #2242302. SC is supported in part by Google Fac-
ulty Research Award, OpenAI SuperAlignment Grant, ONR
Young Investigator Award, NSF RI #2312956, and NSF
FRR#2327973.

References
Anthony, T., Tian, Z., and Barber, D. Thinking fast and

slow with deep learning and tree search, 2017. URL
https://arxiv.org/abs/1705.08439.

Austin, J., Odena, A., Nye, M., Bosma, M., Michalewski,
H., Dohan, D., Jiang, E., Cai, C., Terry, M., Le, Q., et al.
Program synthesis with large language models. arXiv
preprint arXiv:2108.07732, 2021.

Brown, B., Juravsky, J., Ehrlich, R., Clark, R., Le, Q. V.,
Ré, C., and Mirhoseini, A. Large language monkeys:
Scaling inference compute with repeated sampling. arXiv
preprint arXiv:2407.21787, 2024.

Carta, T., Romac, C., Wolf, T., Lamprier, S., Sigaud, O.,
and Oudeyer, P.-Y. Grounding large language models
in interactive environments with online reinforcement
learning, 2024. URL https://arxiv.org/abs/
2302.02662.

Chen, B., Zhang, F., Nguyen, A., Zan, D., Lin, Z., Lou,
J.-G., and Chen, W. Codet: Code generation with gener-
ated tests, 2022. URL https://arxiv.org/abs/
2207.10397.

Chen, B., Shu, C., Shareghi, E., Collier, N., Narasimhan,
K., and Yao, S. Fireact: Toward language agent fine-
tuning, 2023a. URL https://arxiv.org/abs/
2310.05915.

Chen, M., Tworek, J., Jun, H., Yuan, Q., de Oliveira Pinto,
H. P., Kaplan, J., Edwards, H., Burda, Y., Joseph, N.,
Brockman, G., Ray, A., Puri, R., Krueger, G., Petrov,
M., Khlaaf, H., Sastry, G., Mishkin, P., Chan, B., Gray,
S., Ryder, N., Pavlov, M., Power, A., Kaiser, L., Bavar-
ian, M., Winter, C., Tillet, P., Such, F. P., Cummings, D.,
Plappert, M., Chantzis, F., Barnes, E., Herbert-Voss, A.,
Guss, W. H., Nichol, A., Paino, A., Tezak, N., Tang,
J., Babuschkin, I., Balaji, S., Jain, S., Saunders, W.,
Hesse, C., Carr, A. N., Leike, J., Achiam, J., Misra,
V., Morikawa, E., Radford, A., Knight, M., Brundage,
M., Murati, M., Mayer, K., Welinder, P., McGrew, B.,
Amodei, D., McCandlish, S., Sutskever, I., and Zaremba,
W. Evaluating large language models trained on code,
2021.

Chen, X., Lin, M., Schärli, N., and Zhou, D. Teaching large
language models to self-debug, 2023b. URL https:
//arxiv.org/abs/2304.05128.

Chen, X., Lin, M., Schärli, N., and Zhou, D. Teaching
large language models to self-debug. In The Twelfth
International Conference on Learning Representations,
2024. URL https://openreview.net/forum?
id=KuPixIqPiq.

Choudhury, S. and Sodhi, P. Better than your teacher: Llm
agents that learn from privileged ai feedback, 2024. URL
https://arxiv.org/abs/2410.05434.

Cobbe, K., Kosaraju, V., Bavarian, M., Chen, M., Jun, H.,
Kaiser, L., Plappert, M., Tworek, J., Hilton, J., Nakano,
R., et al. Training verifiers to solve math word problems.
arXiv preprint arXiv:2110.14168, 2021.

9

https://arxiv.org/abs/1705.08439
https://arxiv.org/abs/2302.02662
https://arxiv.org/abs/2302.02662
https://arxiv.org/abs/2207.10397
https://arxiv.org/abs/2207.10397
https://arxiv.org/abs/2310.05915
https://arxiv.org/abs/2310.05915
https://arxiv.org/abs/2304.05128
https://arxiv.org/abs/2304.05128
https://openreview.net/forum?id=KuPixIqPiq
https://openreview.net/forum?id=KuPixIqPiq
https://arxiv.org/abs/2410.05434

Multi-Turn Code Generation Through Single-Step Rewards

Dubey, A., Jauhri, A., Pandey, A., Kadian, A., Al-Dahle,
A., Letman, A., Mathur, A., Schelten, A., Yang, A., Fan,
A., et al. The llama 3 herd of models. arXiv preprint
arXiv:2407.21783, 2024.

Gehring, J., Zheng, K., Copet, J., Mella, V., Cohen, T., and
Synnaeve, G. Rlef: Grounding code llms in execution
feedback with reinforcement learning. arXiv preprint
arXiv:2410.02089, 2024a.

Gehring, J., Zheng, K., Copet, J., Mella, V., Cohen, T.,
and Synnaeve, G. Rlef: Grounding code llms in execu-
tion feedback with reinforcement learning, 2024b. URL
https://arxiv.org/abs/2410.02089.

Guan, X., Zhang, L. L., Liu, Y., Shang, N., Sun, Y., Zhu, Y.,
Yang, F., and Yang, M. rstar-math: Small llms can master
math reasoning with self-evolved deep thinking, 2025.
URL https://arxiv.org/abs/2501.04519.

Islam, M. A., Ali, M. E., and Parvez, M. R. Mapcoder:
Multi-agent code generation for competitive problem
solving, 2024. URL https://arxiv.org/abs/
2405.11403.

Kakade, S. and Langford, J. Approximately optimal ap-
proximate reinforcement learning. In Proceedings of the
Nineteenth International Conference on Machine Learn-
ing, pp. 267–274, 2002.

Kumar, A., Zhuang, V., Agarwal, R., Su, Y., Co-Reyes,
J. D., Singh, A., Baumli, K., Iqbal, S., Bishop, C.,
Roelofs, R., Zhang, L. M., McKinney, K., Shrivas-
tava, D., Paduraru, C., Tucker, G., Precup, D., Behba-
hani, F., and Faust, A. Training language models to
self-correct via reinforcement learning, 2024a. URL
https://arxiv.org/abs/2409.12917.

Kumar, A., Zhuang, V., Agarwal, R., Su, Y., Co-Reyes, J. D.,
Singh, A., Baumli, K., Iqbal, S., Bishop, C., Roelofs,
R., et al. Training language models to self-correct via
reinforcement learning. arXiv preprint arXiv:2409.12917,
2024b.

Le, H., Wang, Y., Gotmare, A. D., Savarese, S., and Hoi,
S. C. H. Coderl: Mastering code generation through
pretrained models and deep reinforcement learning, 2022.
URL https://arxiv.org/abs/2207.01780.

Li, Y., Choi, D., Chung, J., Kushman, N., Schrittwieser,
J., Leblond, R., Eccles, T., Keeling, J., Gimeno, F.,
Dal Lago, A., Hubert, T., Choy, P., de Masson d’Autume,
C., Babuschkin, I., Chen, X., Huang, P.-S., Welbl, J.,
Gowal, S., Cherepanov, A., Molloy, J., Mankowitz,
D. J., Sutherland Robson, E., Kohli, P., de Freitas,
N., Kavukcuoglu, K., and Vinyals, O. Competition-
level code generation with alphacode. Science, 378

(6624):1092–1097, December 2022. ISSN 1095-9203.
doi: 10.1126/science.abq1158. URL http://dx.doi.
org/10.1126/science.abq1158.

Lightman, H., Kosaraju, V., Burda, Y., Edwards, H., Baker,
B., Lee, T., Leike, J., Schulman, J., Sutskever, I., and
Cobbe, K. Let’s verify step by step, 2023. URL https:
//arxiv.org/abs/2305.20050.

Muennighoff, N., Liu, Q., Zebaze, A., Zheng, Q., Hui, B.,
Zhuo, T. Y., Singh, S., Tang, X., von Werra, L., and Long-
pre, S. Octopack: Instruction tuning code large language
models. arXiv preprint arXiv:2308.07124, 2023.

Ni, A., Allamanis, M., Cohan, A., Deng, Y., Shi, K., Sutton,
C., and Yin, P. NExt: Teaching large language models to
reason about code execution. In Forty-first International
Conference on Machine Learning, 2024. URL https:
//openreview.net/forum?id=B1W712hMBi.

Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright,
C. L., Mishkin, P., Zhang, C., Agarwal, S., Slama, K.,
Ray, A., Schulman, J., Hilton, J., Kelton, F., Miller, L.,
Simens, M., Askell, A., Welinder, P., Christiano, P., Leike,
J., and Lowe, R. Training language models to follow
instructions with human feedback, 2022. URL https:
//arxiv.org/abs/2203.02155.

Qu, Y., Zhang, T., Garg, N., and Kumar, A. Recursive in-
trospection: Teaching language model agents how to self-
improve, 2024. URL https://arxiv.org/abs/
2407.18219.

Ridnik, T., Kredo, D., and Friedman, I. Code generation
with alphacodium: From prompt engineering to flow en-
gineering, 2024. URL https://arxiv.org/abs/
2401.08500.

Ross, S. and Bagnell, J. A. Reinforcement and imitation
learning via interactive no-regret learning. arXiv preprint
arXiv:1406.5979, 2014.

Ross, S., Gordon, G., and Bagnell, D. A reduction of imita-
tion learning and structured prediction to no-regret online
learning. In Proceedings of the fourteenth international
conference on artificial intelligence and statistics, pp.
627–635. JMLR Workshop and Conference Proceedings,
2011.

Setlur, A., Nagpal, C., Fisch, A., Geng, X., Eisenstein, J.,
Agarwal, R., Agarwal, A., Berant, J., and Kumar, A. Re-
warding progress: Scaling automated process verifiers for
llm reasoning. arXiv preprint arXiv:2410.08146, 2024.

Shojaee, P., Jain, A., Tipirneni, S., and Reddy, C. K.
Execution-based code generation using deep reinforce-
ment learning, 2023. URL https://arxiv.org/
abs/2301.13816.

10

https://arxiv.org/abs/2410.02089
https://arxiv.org/abs/2501.04519
https://arxiv.org/abs/2405.11403
https://arxiv.org/abs/2405.11403
https://arxiv.org/abs/2409.12917
https://arxiv.org/abs/2207.01780
http://dx.doi.org/10.1126/science.abq1158
http://dx.doi.org/10.1126/science.abq1158
https://arxiv.org/abs/2305.20050
https://arxiv.org/abs/2305.20050
https://openreview.net/forum?id=B1W712hMBi
https://openreview.net/forum?id=B1W712hMBi
https://arxiv.org/abs/2203.02155
https://arxiv.org/abs/2203.02155
https://arxiv.org/abs/2407.18219
https://arxiv.org/abs/2407.18219
https://arxiv.org/abs/2401.08500
https://arxiv.org/abs/2401.08500
https://arxiv.org/abs/2301.13816
https://arxiv.org/abs/2301.13816

Multi-Turn Code Generation Through Single-Step Rewards

Snell, C., Lee, J., Xu, K., and Kumar, A. Scaling llm test-
time compute optimally can be more effective than scal-
ing model parameters. arXiv preprint arXiv:2408.03314,
2024.

Stiennon, N., Ouyang, L., Wu, J., Ziegler, D., Lowe,
R., Voss, C., Radford, A., Amodei, D., and Chris-
tiano, P. F. Learning to summarize with human
feedback. In Larochelle, H., Ranzato, M., Had-
sell, R., Balcan, M., and Lin, H. (eds.), Advances
in Neural Information Processing Systems, vol-
ume 33, pp. 3008–3021. Curran Associates, Inc.,
2020. URL https://proceedings.neurips.
cc/paper_files/paper/2020/file/
1f89885d556929e98d3ef9b86448f951-Paper.
pdf.

Sun, W., Venkatraman, A., Gordon, G. J., Boots, B., and
Bagnell, J. A. Deeply aggrevated: Differentiable imita-
tion learning for sequential prediction. In International
conference on machine learning, pp. 3309–3318. PMLR,
2017.

Swamy, G., Choudhury, S., Bagnell, J. A., and Wu, S. Of
moments and matching: A game-theoretic framework for
closing the imitation gap. In International Conference on
Machine Learning, pp. 10022–10032. PMLR, 2021.

Wang, P., Li, L., Shao, Z., Xu, R. X., Dai, D., Li, Y.,
Chen, D., Wu, Y., and Sui, Z. Math-shepherd: Ver-
ify and reinforce llms step-by-step without human an-
notations, 2024a. URL https://arxiv.org/abs/
2312.08935.

Wang, X., Chen, Y., Yuan, L., Zhang, Y., Li, Y., Peng, H.,
and Ji, H. Executable code actions elicit better LLM
agents. In Forty-first International Conference on Ma-
chine Learning, 2024b. URL https://openreview.
net/forum?id=jJ9BoXAfFa.

Welleck, S., Lu, X., West, P., Brahman, F., Shen, T.,
Khashabi, D., and Choi, Y. Generating sequences
by learning to self-correct. In The Eleventh In-
ternational Conference on Learning Representations,
2023. URL https://openreview.net/forum?
id=hH36JeQZDaO.

Wu, Y., Sun, Z., Li, S., Welleck, S., and Yang, Y. Infer-
ence scaling laws: An empirical analysis of compute-
optimal inference for problem-solving with language
models. arXiv preprint arXiv:2408.00724, 2024.

Zelikman, E., Wu, Y., Mu, J., and Goodman, N. Star: Boot-
strapping reasoning with reasoning. Advances in Neural
Information Processing Systems, 35:15476–15488, 2022.

Zhai, Y., Bai, H., Lin, Z., Pan, J., Tong, S., Zhou, Y., Suhr,
A., Xie, S., LeCun, Y., Ma, Y., and Levine, S. Fine-
tuning large vision-language models as decision-making
agents via reinforcement learning, 2024. URL https:
//arxiv.org/abs/2405.10292.

Zhang, D., Zhoubian, S., Hu, Z., Yue, Y., Dong, Y., and
Tang, J. Rest-mcts*: Llm self-training via process re-
ward guided tree search, 2024. URL https://arxiv.
org/abs/2406.03816.

Zhao, W., Jiang, N., Lee, C., Chiu, J. T., Cardie, C., Gallé,
M., and Rush, A. M. Commit0: Library generation from
scratch. arXiv preprint arXiv:2412.01769, 2024.

Zheng, L., Yin, L., Xie, Z., Sun, C., Huang, J., Yu, C. H.,
Cao, S., Kozyrakis, C., Stoica, I., Gonzalez, J. E., Bar-
rett, C., and Sheng, Y. Sglang: Efficient execution
of structured language model programs, 2024. URL
https://arxiv.org/abs/2312.07104.

Zhou, Y., Zanette, A., Pan, J., Levine, S., and Kumar, A.
Archer: Training language model agents via hierarchical
multi-turn rl. arXiv preprint arXiv:2402.19446, 2024.

11

https://proceedings.neurips.cc/paper_files/paper/2020/file/1f89885d556929e98d3ef9b86448f951-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1f89885d556929e98d3ef9b86448f951-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1f89885d556929e98d3ef9b86448f951-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1f89885d556929e98d3ef9b86448f951-Paper.pdf
https://arxiv.org/abs/2312.08935
https://arxiv.org/abs/2312.08935
https://openreview.net/forum?id=jJ9BoXAfFa
https://openreview.net/forum?id=jJ9BoXAfFa
https://openreview.net/forum?id=hH36JeQZDaO
https://openreview.net/forum?id=hH36JeQZDaO
https://arxiv.org/abs/2405.10292
https://arxiv.org/abs/2405.10292
https://arxiv.org/abs/2406.03816
https://arxiv.org/abs/2406.03816
https://arxiv.org/abs/2312.07104

Multi-Turn Code Generation Through Single-Step Rewards

A. Appendix
A.1. Proof of Theorem 3.2

The proof relies on two important results.

The first is the Performance Difference Lemma (PDL) (Kakade & Langford, 2002) which states that the performance
difference between any two policies can be expressed as the sum of advantages.

J(π)− J(π′) =

T∑
t=1

Est∼dπ
t

[∑
at

Aπ′
(st, at)π(at|st)

]
(8)

where st ∼ dπt is the induced state distribution by π, and Aπ′
(st, at) = Qπ′

(st, at)− V π′
(st) is the advantage w.r.t. π′.

We apply the PDL between the expert π∗ and the learner π

J(π⋆)− J(π) =

T∑
t=1

Est∼dπ
t

[∑
at

A⋆(st, at) (π
⋆(at|st)− π(at|st))

]
(9)

where the result follows from
(∑

at
A⋆(st, at)π

⋆(at|st) = 0
)

According to the one-step recoverable MDP definition, A⋆(s, a) ≤ 1 for all (s, a). Hence we can bound the performance
difference as

J(π⋆)− J(π) =

T∑
t=1

Est∼dπ
t

[∑
at

A⋆(st, at) (π
⋆(a|st)− π(a|st))

]

≤ ||A⋆(., .)||∞
T∑

t=1

Est∼dπ
t
||π(.|ht)− π⋆(.|st)||1 (Holder’s Inequality)

≤
T∑

t=1

Est∼dπ
t
||π(.|st)− π⋆(.|st)||1 (One step recoverability)

The second result we use us from interactive imitation learning DAGGER (Ross et al., 2011) that reduces imitation learning
to no-regret online learning. DAGGER shows that with π⋆ as the expert teacher guarantees that after N iterations, it will find
at least one policy

Es∼dπ ||π(.|s)− π⋆(.|s)||1 ≤ Es∼dπ ||πclass(.|s)− π⋆(.|s)||1 + γ(N) (10)

where γ(N) is the average regret, and dπ is the time average distribution of states induced by policy π, πclass is the best
policy in policy class.

Plugging this in we have

J(π⋆)− J(π) ≤
T∑

t=1

Est∼dπ
t
||π(.|st)− π⋆(.|st)||1

≤
T∑

t=1

Est∼dπ
t
||πclass(.|st)− π⋆(.|st)||1 + γ(N) From (10)

≤ T (ϵ+ γ(N))

12

Multi-Turn Code Generation Through Single-Step Rewards

A.2. Hyperparameters
Model Generator Verifier

Training Epochs 2 2
Learning Rate 5× 10−7 1× 10−6

Batch Size 32 64
Max seq length 8192 2048

Table 3. Hyperparameters for SFT and RM training.
A.2.1. TRAINING PARAMETERS

Table 3 contains hyperparameters for training the generator and reward model on both models (Llama-3.1-8B-Instruct and
Llama-3.2-1B-Instruct) and datasets (MBPP and HumanEval). We perform 2 iterations of training with µCODE, starting
from the base model each iteration. All training runs were on machines with either 4 RTX 6000 Ada Generation GPUs for
1B models with 48 GB of memory per GPU or 4 H100 GPUs for 8B models with 80 GB of memory per GPU.

A.2.2. INFERENCE PARAMETERS

We use SGLang (Zheng et al., 2024) to serve our models for inference. Greedy experiments use temperature 0 with flags
–disable-radix-cache –max-running-request 1 to ensure deterministic results while BoN search experiments use a temperature
of 0.7. All experiments are capped to 1000 tokens per completion per turn.

A.3. Prompts

A.3.1. SINGLE STEP PROMPT

Immediately below is the prompt template to generate 1 code completion in a single-step method or to generate the 1st step
in a multi-step method. Below the prompt templates are examples of the code prompt and public tests for HumanEval and
MBPP.

Single Step Prompt

Write a Python function implementation for the following prompt:

\{prompt\}

Your code should satisfy these tests:

\{test\}

Return only the implementation code, no tests or explanations. Be sure to include
the relevant import statements:
‘‘‘python
code
‘‘‘

HumanEval Prompt

from typing import List

def has_close_elements(numbers: List[float], threshold: float) -> bool:
""" Check if in given list of numbers, are any two numbers closer to each other

than
given threshold.
>>> has_close_elements([1.0, 2.0, 3.0], 0.5)
False
>>> has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3)
True
"""

13

Multi-Turn Code Generation Through Single-Step Rewards

HumanEval Test

def check(has_close_elements):
assert has_close_elements([1.0, 2.0, 3.0], 0.5) == False
assert has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3) == True

check(has_close_elements)

MBPP Prompt

Write a function to find the minimum cost path to reach (m, n) from (0, 0) for the
given cost matrix cost[][] and a position (m, n) in cost[][].

MBPP Test

assert min_cost([[1, 2, 3], [4, 8, 2], [1, 5, 3]], 2, 2) == 8
assert min_cost([[2, 3, 4], [5, 9, 3], [2, 6, 4]], 2, 2) == 12
assert min_cost([[3, 4, 5], [6, 10, 4], [3, 7, 5]], 2, 2) == 16

A.3.2. FEEDBACK PROMPT

Immediately below is the prompt template for how we provide feedback in multi-step methods. The feedback only consists
of executor error traces, and we provide an example from HumanEval.

Multi-Step Feedback Prompt

Feedback:

\{feedback\}

HumanEval Multi-Step Feedback Prompt

Traceback (most recent call last):
File "test.py", line 18, in <module>
assert has_close_elements([1.0, 2.0, 3.0], 0.5) == False

ˆˆˆ
AssertionError

A.4. Public Private Tests

We choose a public-private test split for HumanEval and MBPP to ensure that naively passing the public tests does not
guarantee private test success. For HumanEval, we use a single test from the code prompt’s docstring as the public test and
the remaining tests along with the official test suite as private tests. For ease of parsing, we utilize a processed version of
HumanEval, HumanEvalPack (Muennighoff et al., 2023). For MBPP, we use a single test from the official test suite as the
public test, and the remaining tests and any “challenge test list” tests as private tests.

14

https://huggingface.co/datasets/bigcode/humanevalpack

