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Motivation

** Recent methods train a single feed-forward network over the masked images

** Another approach is to find the ‘best-matching’ latent vector by using a pre-trained generative model*
** High inference time due to iterative optimization and difficulty in scaling to higher resolutions

** Learned a data driven parametric network to directly predict a matching latent prior for a given input
** Regularized the network with structural prior for better preservation of pose and size of the objects

» Leveraged recent high resolution GAN models to scale our inpainting network to 256x256

** Extended our model for sequence reconstruction, using a recurrent net based grouped latent prior learning

* Yeh et al. "Semantic Image Inpainting with Deep Generative Models” CVPR. 2017.



Noise Prior Prediction Network

Aim: Learn to predict a “good” z vector from just unmasked pixels

O Step 1: Independent training of GAN (can be any generative model !!!)
 Step 2: Learn to predict noise prior conditioned on masked image
(J Step 3: Pass the predicted prior through the generator of pre-trained GAN

Step 1: GAN Training I Step 2: Noise Prior Prediction Training I Step 3: Inference
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Structural Prior guided Training

Problem Setup

O Have structural priors to regularize GAN outputs

O State-of-the-art landmark detection models fail
on masked images
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Learning with AutoEncoder Framework
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Grouped Prior for Video Inpainting

1 For videos, we need both static picture quality and temporal coherence
1 Independent prediction of z on each frame can leads for temporal jittering
1 Can we learn a group of z vectors together ?
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Grouped prior prediction framework for video inpainting
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Results: Improvements over iterative Baseline

We convert the iterative framework to a single

pass inference model

U Single pass through our network is the final
output

[ Single pass through Yeh et al.* is far from
acceptable quality (requires 1000-1500 iterations)
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* Yeh et al. "Semantic Image Inpainting with Deep Generative Models CVPR. 2017.



