

¹Indian Institute of Technology Kharagpur, ²Microsoft

- Recent methods train a single feed-forward network over the masked images
- Another approach is to find the '*best-matching*' latent vector by using a pre-trained generative model*
- ✤ High inference time due to iterative optimization and difficulty in scaling to higher resolutions
- Learned a data driven parametric network to directly predict a matching latent prior for a given input
- Regularized the network with structural prior for better preservation of pose and size of the objects
- Leveraged recent high resolution GAN models to scale our inpainting network to 256×256
- Extended our model for sequence reconstruction, using a recurrent net based grouped latent prior learning

* Yeh et al. "Semantic Image Inpainting with Deep Generative Models", CVPR. 2017.

Noise Prior Prediction Network

Aim: Learn to predict a "good" z vector from just unmasked pixels

Step 1: Independent training of GAN (can be any generative model !!!)
Step 2: Learn to predict noise prior conditioned on masked image
Step 3: Pass the predicted prior through the generator of pre-trained GAN

Structural Prior guided Training

Problem Setup

 Have structural priors to regularize GAN outputs
State-of-the-art landmark detection models fail on masked images

Input:

- a) Predicted set $S = \{(x_{pred}, y_{pred})\}^{68 \times 2}$
- b) Target set T = { (x_{actual}, y_{actual}) }^{68×2}

Output:

Refined Set R = {
$$(x_{refined}, y_{refined})$$
}^{68×2}

Learning with AutoEncoder Framework

For videos, we need both static picture quality and temporal coherence
Independent prediction of z on each frame can leads for temporal jittering
Can we learn a group of z vectors together ?

Grouped prior prediction framework for video inpainting

Results: Improvements over iterative Baseline

We convert the iterative framework to a single pass inference model

- Single pass through our network is the final output
- □ Single pass through Yeh et al.* is far from acceptable quality (requires 1000-1500 iterations)

Resolution	Yeh et al.	Ours : M _z	Ours: M_{z+S}
64X64	2175	2.7	2.8
128X128	10750	11.0	13.2

Inference time (milli-seconds) for inpainting at different resolutions

* Yeh et al. "Semantic Image Inpainting with Deep Generative Models", CVPR. 2017.

